Rapid Monte Carlo Simulation -
Hands-On Learning

March 2017

Rob Chang, FI Consulting
Joe Pimbley, Maxwell Consulting

Outline

» Monte Carlo Simulation Advice
» “Vasicek Test” Example for Code Acceleration —

» Python, Parallel Processing, Spark

-

» Interactive Code Building - Excel VBA and Python

GARP Article

- Quant Perspectives -

Rapid Monte Carlo Simulation

Practical tips and methods to improve risk management through faster calculations:

Thursday, May 26, 2016

By Joe Pimbley and Robert Chang

See the 2016 GARP article Rapid Monte Carlo Simulation at
http://www.garp.org/#!/risk-intelligence/all/all/
al1Z400000034RwEEAU

Webinar

FI-CONSULTING

Rapid Monte Carlo Simulation for Forecasting,
Stress Testing, and Scenario Analysis
Parallel Processing in Apache Spark

May 17, 2016

See this webinar posted to YouTube at
https://youtu.be/ASE0Gue8ugY or at
https://yvoutu.be/DcUD-Ezjw7c

Learning Lab

In this Lab, we write the beginning code for Rapid Monte Carlo

Learning Lab Monte Carlo Files

Roll Dice: or Python
Log-Normal Equity: or Python Y

Video: Learning Lab for Excel VBA

Article: Rapid Monte Carlo Simulation

Video: Rapid Monte Carlo Simulation

Maxwell-Consulting.com/GARP.html

Monte Carlo Advice

Faster is Always Better !

» Value of MC Simulation increases when calculations run faster
» More precision in results
» Run more “experiments”
» Permits greater “realism” in adding features
» Examples: Real-time risk management; nested MC methods

» Almost always possible to get faster speed
» Hardware - eg, high-performance processors in parallel
» Software - eg, optimized code
» Disadvantage of “off-the-shelf” MC products

Vasicek Example

» Consider Portfolio of “Infinite” Number of Loans
» Each Loan has Identical Default Probability
» Each Loan has Identical Correlation to all Other Loans

» Vasicek: Analytical Solution for Portfolio Loss Distribution

_K+1-p®7(x)

Jp

F(x) = @ with K = ®7'(p)

F(x) = ®_—K+\/@_l(x)

BN

Vasicek Analysis

with K = @~

» Real Project: Analysis of Auto Loan Pool Losses

» With Many Pools, MLE Estimation of PD & Correlation

> Need a Test for the MLE Estimators

» Build Monte Carlo Algorithm

Vasicek Analysis

| Pool 1 \ | Pool 2 l ‘ Pool 3 \ | Pool N l

» Imagine M Loans in Each of the N Pools
» Monte Carlo Simulation to get Default Fraction each Pool
» Check MLE Estimators given “known” PD & Correlation

» Also a Test of Vasicek and Numerical Methods

Vasicek Analysis

The Vasicek distribution describes the probability density function for the fraction of defaulted loans within an infinitely diversified portfolio. Simple
but restrictive assumptions specify a single default probability (PD) common to each loan and a single correlation parameter linking the behavior of all
loans.

Variance Test: The numerical integration and Monte Carlo simulation are two viable methods to compute the variance of this Vasicek distribution - very
important for understanding the risk of the loan portfolio!

Pool Test: Create an arbitrary number of pools with an arbitrary number of obligors per pool. Apply Monte Carlo simulation to determine fraction of
defaults in each pool. Then compare to the analytical Vasicek distribution.

Vasicek Pool Test
Enter # Pools 2,000 Enter # Obligors per Pool 10,000 Calculate
Vasicek Monte Carlo Distribution
Return to Main Page ' T forieCare
8.8
. . . . ?
Visual Studio .Net Web Application §
Webjoe.azurewebsites.net/Vasicek Variance £
'§ 44
&
224
0 T W uol_ T 1
0 02 04 0.6 08 1

Fraction of Portfolio in Default

Code Improvement

! Generate Num Pools to measure the default fraction of Number Obligors
! within each pool. We provide a single-factor correlation and then
! determine if the MLE extraction for correlation and Obligor default
! probability works well.
For kount Pools = 1 To Num pools
Def number = 0
' Set the systemic random variable Pool Y.
Call Gauss_RV(G1l, G2)
Pool Y = G1 * Sqgr(rho)

For kount = 1 To Number obligors Step 2
Call Gauss_RV(G1l, G2)
Ob RV = Pool Y + Sgr(l# - rho) * G1
If Application.NormSDist (Ob_RV) < Def prob Then Def number
Ob_RV = Pool Y + Sgr(1l# - rho) * G2
If Application.NormSDist (Ob_RV) < Def prob Then Def number = Def number + 1
Next kount

Def number + 1

Def fraction(kount Pools) = CDbl (Def number) / CDbl (Number obligors)
If Def number = 0 Then

x (kount_Pools) = Min X
Else

X (kount_Pools) = Application.NormSInv(Def fraction(kount Pools))
End If

Next kount_Pools

With 2,000 Pools and 10,000 Obligors per

Pool, the Inner Loop Generates RVs for
Default Determination of 20 Million Loans

Code Improvement

' Generate Num Pools to measure the default fraction of Number Obligors
! within each pool. We provide a single-factor correlation and then
! determine if the MLE extraction for correlation and Obligor default
! probability works well.
For kount_Pools = 1 To Num_pools
Def number = 0
' Set the systemic random variable Pool Y.
Call Gauss_RV(G1l, G2)
Pool Y = G1 * Sgr(rho)

For kount = 1 To Number obligors Step 2
Call Gauss_RV(G1l, G2)
Ob_RV = Pool Y + Sgr(i# - rho) * Gl
If Application.NormSDist (Ob RV) < Def prob Then Def number = Def number + 1
Ob RV = Pool Y + Sgr(l# - rho) * G2
If Application.NormSDist (Ob_RV) < Def prob Then Def number
Next kount

Def number + 1

Def fraction(kount Pools) = CDbl (Def number) / CDbl (Number obligors)
If Def number = 0 Then

x (kount_Pools) = Min X
Else

X (kount_Pools) = Application.NormSInv(Def fraction(kount Pools))
End If

Next kount_Pools

Look Carefully at Each Line of Code in the
Inner Loop to Reduce “Expensive”
Calculations

Code Improvement

! Generate Num Pools to measure the default fraction of Number Obligors
! within each pool. We provide a single-factor correlation and then
! determine if the MLE extraction for correlation and Obligor default
! probability works well.
For kount Pools = 1 To Num pools
Def number = 0
' Set the systemic random variable Pool Y.
Call Gauss_RV(G1l, G2)
Pool Y = G1 * Sqgr(rho)

For kount = 1 To Number obligors Step 2
Call Gauss_RV(G1l, G2)
Ob RV = Pool Y + Sgr(1# - rho) * G1
If Application.NormSDist (Ob_RV) < Def prob Then Def number
Ob RV = Pool Y + Sgr(1l# - rho) * G2
If Application.NormSDist (Ob_RV) < Def prob Then Def number
Next kount

Def number + 1

Def number + 1

Def fraction(kount_ Pools) = CDbl(Def number) / CDbl (Number obligors)
If Def number = 0 Then

x (kount Pools) = Min X
Else

x (kount_Pools) = Application.NormSInv(Def fraction(kount Pools))
End If

Next kount_ Pools

Look Carefully at Each Line of Code in the
Inner Loop to Reduce “Expensive”
Calculations

Code Improvement

! Generate Num Pools to measure the default fraction of Number Obligors
! within each pool. We provide a single-factor correlation and then
! determine if the MLE extraction for correlation and Obligor default
! probability works well.
For kount Pools = 1 To Num pools
Def number = 0
' Set the systemic random variable Pool Y.
Call Gauss_RV(G1l, G2)
Pool Y = G1 * Sqgr(rho)

For kount = 1 To Number obligors Step 2
Call Gauss_RV(G1l, G2)
Ob RV = Pool Y + Sgr(1l# - rho) * G1
If Application.NormSDist (Ob_RV) < Def prob Then Def number
Ob_RV = Pool Y + Sgr(1l# - rho) * G2
If Application.NormSDist (Ob_RV) < Def prob Then Def number
Next kount

Def number + 1

Def number + 1

Def fraction(kount Pools) = CDbl(Def number) / CDbl (Number obligors)
If Def number = 0 Then

x (kount Pools) = Min X
Else

x (kount_Pools) = Application.NormSInv(Def fraction(kount_ Pools))
End If

Next kount_ Pools

Look Carefully at Each Line of Code in the
Inner Loop to Reduce “Expensive”
Calculations

Code Improvement

Sg rho = Sqgr(rho)
Sqg wmrho = Sgr (1# - rho)

Generate Num Pools to measure the default fraction of Number Obligors
within each pool. We provide a single-factor correlation and then
determine if the MLE extraction for correlation and Obligor default
probability works well.

For kount_ Pools = 1 To Num pools

Def number = 0

' Set the systemic random variable Pool Y.

Call Gauss_RV(Gl, G2)

Pool Y = G1 * Sg_rho

For kount = 1 To Number obligors Step 2
Call Gauss_RV(G1l, G2)
Ob RV = Pool Y + Sq _wmrho * G1
If Application.NormSDist (Ob_RV) < Def prob Then Def number
Ob RV = Pool Y + Sq_wmrho * G2
If Application.NormSDist (Ob_RV) < Def prob Then Def number
Next kount

Def number + 1

Def number + 1

Def fraction(kount Pools) = CDbl(Def number) / CDbl (Number obligors)
If Def number = 0 Then

x (kount Pools) = Min X
Else

x (kount_Pools) = Application.NormSInv(Def fraction(kount Pools))
End If

Next kount_ Pools

Making this Change Reduces Execution
Time from 120 s to 117 s — Small Saving.

Code Improvement

Sg_rho = Sgr (rho)
Sqg_wmrho = Sgr (1# - rho)

Generate Num Pools to measure the default fraction of Number Obligors
within each pool. We provide a single-factor correlation and then
determine if the MLE extraction for correlation and Obligor default
probability works well.

For kount Pools = 1 To Num pools

Def number = 0

! Set the systemic random variable Pool Y.

Call Gauss_RV(G1l, G2)

Pool Y = G1 * Sqg_rho

For kount = 1 To Number obligors Step 2
Call Gauss_RV(G1l, G2)
Ob RV = Pool Y + Sg wmrho * G1
If JNormsDist (Ob_RV) < Def prob Then Def number
Ob_RV = Pool_ Y + Sg _wmrho * G2
If JNormsDist (Ob_RV) < Def prob Then Def number
Next kount

Def number + 1

Def number + 1

Def fraction(kount Pools) = CDbl (Def number) / CDbl (Number obligors)
If Def number = 0 Then

x (kount_Pools) = Min X
Else

x (kount_Pools) = Application.NormSInv(Def fraction(kount Pools))
End If

Next kount_ Pools

Change: Reduces Execution Time from 117
to 28 - Big Saving!

Code Improvement

Sg_rho = Sqgr(rho)
Sq_wmrho = Sqgr (1# - rho)
Phi_inv_Def prob = Application.NormSInv (Def prob)

Generate Num Pools to measure the default fraction Number Obligors
within each pool. We provide a single-factor /correlatiom=nd then
determine if the MLE extraction for correlatipr -~ "-7: i~~~ -8t
probability works well.

For kount Pools = 1 To Num pools (D(RV) < PD
Def number = 0

' Set the systemic random variable Pool Y.
Call Gauss_RV(G1l, G2)

Pool Y = G1 * Sg_rho

equivalent to

For kount = 1 To Number obligors Step 2
Call Gauss_RV(G1l, G2)
Ob RV = Pool Y + Sg wmrho * G1
If Ob RV < Phi_inv Def prob Then Def number
Ob RV = Pool Y + Sg _wmrho * G2
If Ob_RV < Phi_inv Def prob Then Def number
Next kount

RV < ®-1(PD)

Def number

Def number + 1

Def fraction(kount Pools) = CDbl(Def number) / CDbl (Number obligors)
If Def number = 0 Then

x (kount_ Pools) = Min X
Else

x (kount_ Pools) = Application.NormSInv(Def fraction (kount_ Pools))
End If

Next kount Pools

Change: Reduces Execution Time from 28
to 8.4 - Big Saving! End Result is 15x
Speed Improvement

Serial vs. Parallel Programming

Many or most of our programs are Serial.
» A Serial Program consists of a sequence of instructions, where each
instruction executes one after the other.

» Serial programs run from start to finish on a single processor.

Parallel programming developed as a means of improving
performance and efficiency.

» Parallel Programs are usually ran on a set of computers connected on a
network, or a pool of CPU .

» Parallel Programs can be used to solve problems involving large datasets and
non-local resources.

Serial vs. Parallel Programming

A Serial Program consists of a sequence of instructions,
where each instruction executes one after the other.

In a Parallel Program, the processing is broken up into
parts, each of which could be executed concurrently on a
different processor

Parallel Communication

The MapReduce Programming Model

»MapReduce was developed within Google as a mechanism for processing
large amounts of raw data, for example, crawled documents or web request

logs.

» Google data is so large, it must be distributed across tens of thousands of
machines in order to be processed in a reasonable time.

» The distribution implies parallel computing since the same computations are
performed on each CPU, but with a different portion of data.

Input

Hadoop uses
MapReduce

Thereisa
Map phase

Thereisa
Reduce phase

The MapReduce Programming Model

Sort, Shuffle
(hadoop, 1)

Reducers

mapreduce, 1)

(there, 1)

%

{a,[1,1]},
{hadoop, [1]},

{ie, [1,11}

|

5

{map, [1,1]},
{phase, [1,1]}

{mapreduce, 1]},]

(reduce, 1)

B

{reduce, [1,11},
{there, [1]},
{uses, [1,1]}

|

Output

al
hadoop 1
ie2

map 1
mapreduce 1
phase 2

reduce 1
there 2
uses 1

MapReduce divides a task into subtasks, handles the sub-tasks in
parallel, and aggregate the results of the subtasks for the final output.

What is MapReduce?

A map job, takes a set of data and converts it into another set of
data, where individual elements are broken down into key/
value pairs.

Input data
Output data

<
Reduce()

A reduce job takes the output from a map as input and merges
together these values to form a possibly smaller set of values.

Apache Spark

» Spark extends MapReduce model to efficiently support more types of
computations, including interactive queries and stream processing.

» Spark is an open-source software solution that performs rapid calculations on
in-memory distributed datasets.

» Spark is designed to be highly accessible, offering simple APIs in Python,
Java, Scala, and SQL, and rich built-in libraries.

Apache Spark

Spark is an open-source software solution that performs
rapid calculations on in-memory distributed datasets.

RDD

map
reduceByKey
sortBykey + functions

filter
join

Spark’s uses Resilient Distributed Datasets (RDDs). RDDs

can be automatically recomputed on failure and are
resilient and fault-tolerant.

Parallel Processing of Monte Carlo Samples

def default(idx):
def number = 0
temp gauss = Gauss RV()
ob rv = pool y + sq wmrho * temp gauss[0]
if ob rv < phi inv def prob: def number += 1
ob rv = pool y + sq wmrho * temp gauss[1]
if ob rv < phi inv def prob: def number += 1
return def number

for kount pools in range(©,num pools):
temp gauss = Gauss RV/(
pool y = temp gauss[0] * sq rho

count
count

sc.parallelize(xrange(number obligors half)).map(default)
count. reduce(add)

def fraction[kount pools] = count / float(number obligors)

We can use the “parallelize” function to run each
Monte Carlo trial in parallel rather than sequentially.

Parallel Processing of Monte Carlo Samples

def default(idx):

deT number = 0

temp gauss Gauss RV()
pQngy4445q¥umthgggxempggaussLnggi

if ob rv < phi inv def prob: def number +=

ob rv = pool y + sq wmrho * temp gauss[1]

if ob rv < phi inv def prob: def number += 1

return def number

for kount pools in range(©,num pools):
temp gauss = Gauss RV
pool y = temp gauss[O] * sq rho

count = sc.parallelize(xrange(number obligors half)).map(default)

count count. reduce(add)

def fraction[kount pools] = count / float(number obligors)

We “map” the default function to each parallel node,
returning a 1 or 0 value corresponding to default status.

Parallel Processing of Monte Carlo Samples

def default(idx):
def number = 0
temp gauss = Gauss RV()
ob rv = pool y + sq wmrho * temp gauss[0]
if ob rv < phi inv def prob: def number += 1
ob rv = pool y + sq wmrho * temp gauss[1]
if ob rv < phi inv def prob: def number += 1
return def number

for kount pools in range(©,num pools):
temp gauss = Gauss RV/()
pool y = temp gauss[0] * sq rho

count

‘ sc.parallelize(xrange(number obligors half)).map(default)
count

count.reduce(add1

‘def_fraction[kount_pools] = count / float(number_obligors”

We “reduce” by simply summing the default statuses, and using the
resultant sum to calculate the default percentage in each loan pool.

Running Monte Carlo in the Cloud

BF AWS v Services v

Elastic MapReduce v Cluster List > Cluster Details

Add step Resize Clone Terminate AWS CLI export

Cluster: My cluster Waiting ciuster ready to run steps.

Connections: Enable Web Connection — Spark History Server, Ganglia, Resource Manager ... (View All)
Master public DNS: ec2- .compute-1.amazonaws.com SSH
Tags: -- View All / Edit
Summary Configuration Details Network and Hardware
ID: j- Release label: emr-4.6.0 Availability us-east-1d
Creation date: 2016-05-13 08:55 (UTC-4) Hadoop Amazon 2.7.2 zone.
Elapsed time: 35 minutes distribution: Subnet ID: subnet-
Auto-terminate: No Applications: Ganglia 3.7.2, Spark 1.6.1 Master: Running 1 ma3.xlarge
Termination Off Change Log URI: -- Core: Running 2 m3.xlarge
protection: EMRF S Disabled Task: --
consistent
view:

We will run today’s example on Amazon Web Services, however there are
numerous cloud providers to choose from, i.e. MS Azure, Digital Ocean etc.

Hands-on Learning

We will now go over some Monte Carlo examples together, in both Excel
VBA and Python. Feel free to grab a partner for this activity!

Wrap-Up and QE&EA!

To learn more, please contact us!

Robert Chang, Model Validation Lead
chang@ficonsulting.com
FI Consulting at www.ficonsulting.com

Joe Pimbley, Principal
pimbley@maxwell-consulting.com
Maxwell Consulting at www.maxwell-consulting.com

