
Joe Pimbley

Rapid Monte Carlo Simulation

Robert Chang, FRM and I give practical tips and methods to improve Risk

Management through faster calculations.

Monte Carlo (MC) simulation is a widespread method one

implements in computer code to create both financial and non-financial

models. Despite an air of sophistication, MC may actually be the simplest

numerical solution technique. The software developer instructs the computer

to generate random numbers which then feed into calculations of financial

outcomes such as loan defaults, yield curve movements, commodity prices,

et cetera.

Virtually all computer languages support this capability. The MC

concept fits extremely well with financial applications due to our perception

that we can specify approximate probability distributions of future events.

We write code that generates future market values in line with our prescribed

distributions and let software calculations impose the complex interactions

among the market values while managing large datasets.

Monte Carlo algorithms always need to be faster

An interesting distinction of MC is that it always needs to be faster!

Many software calculations are “fast enough” in the sense that users might

not even notice a doubling in speed. With MC there is always a trade-off

between speed and precision of results. Thus, users tend to set the number of

MC trials as a balance between good precision (many trials) and fast

execution (fewer trials). When calculation speed increases, users often react

by increasing the trials.

Additionally, when developers increase execution speed, users also

respond by increasing the complexity of the simulation. Instead of

computing risk parameters for bank sub-portfolios separately, a faster

algorithm may prompt the user to run all bank portfolios together – which

gives more meaningful results. This is progress! It means the quality of risk

management improves as MC simulation speeds up.

Joe Pimbley

Almost always possible to speed the calculations

In the “old days” stretching back fifty years of writing computer code

it was important to minimize use of memory and maximize calculation

efficiency. While it clearly remains good practice to avoid waste of memory

and processor time, the impetus is not as it was. The best and brightest of

the software world developed brilliant memory conservation techniques that

have become technology anachronisms with subsequent explosion of

memory capacity.

Just as important, the nature of writing code, even at the spreadsheet

level, is that one first simply proves the concept. The first version of any

software seeks to discover whether it’s workable to solve the user’s problem

in the chosen platform. If yes, then the next versions are for debugging and

making the program properly handle input data errors. Just for the record, all

software needs debugging in early development and all input data have

errors. Building efficiency and speed into the code is generally a last step.

It’s not uncommon for users or developers to forego this final stage.

Simple and powerful example with improved code

Avenues to increase MC execution speed include improvements in

hardware, software, and exploitation of the specific nature of the financial

problem. Let’s consider first an improvement in the software. See the

snapshot below of a portion of VBA code for MC simulation of loan defaults

across an arbitrary number of pools. (See this web page for explanation of

the specific loan default investigation. Software in this web page is

Microsoft Visual Studio .Net, but we produce the same algorithm in VBA to

give this discussion.)

http://webjoe.azurewebsites.net/Vasicek_Variance

Joe Pimbley

The code within the red bracket is most critical since the MC routine

runs through this segment 10 million times with typical input values. All

code outside this loop receives much less “traffic.” Best practice, then, is to

scrutinize each line of code to ask if that line must appear within the critical

loop and, if so, to find the most efficient way to write that line. This code

example has a few shortcomings. We highlight in yellow the worst of these.

In order to compute the Normal Distribution Cumulative Distribution

Function (CDF) – written mathematically as () – this code employs the

Excel spreadsheet function for the Normal CDF. The Excel function is

highly convenient and hence is appropriate for the first version of software.

Replacing this Excel function by a publicly available Normal CDF

subroutine speeds total program execution by a factor of 4! (See Numerical

Recipes in C for the Normal CDF code we use.)

Even better, we can increase speed by another factor of 3 by

eliminating the necessity of calculating the Normal CDF 20 million times.

See the revised VBA code listing below:

http://www.amazon.com/Numerical-Recipes-Scientific-Computing-Second/dp/0521431085/ref=sr_1_1?ie=UTF8&qid=1463943134&sr=8-1&keywords=numerical+recipes+in+c
http://www.amazon.com/Numerical-Recipes-Scientific-Computing-Second/dp/0521431085/ref=sr_1_1?ie=UTF8&qid=1463943134&sr=8-1&keywords=numerical+recipes+in+c

Joe Pimbley

The idea above is that we change the mathematics. Instead of writing

an “if” statement to query whether the Normal CDF of a changing random

variable is less than a fixed value (a default probability in this case), we re-

write the math to ask if the changing random variable is less than the inverse

Normal CDF of the fixed value. We do this inverse Normal CDF evaluation

outside the critical loop where it adds essentially nothing to computation

time.

Deeper methods employing Apache Spark and cloud computing

Robert Chang and I recently presented a webinar on this topic

(available at this link). This lecture holds a longer discussion of software

and also discusses applications of Apache Spark, adapting MC code to

parallel processing, and loading simulations to cloud computing services for

better hardware. GARP members earn CPD credit with this webinar!

Joe Pimbley, FRM is a financial consultant in his role as Principal of

Maxwell Consulting, LLC. His expertise includes enterprise risk

management, structured products, derivatives, investment underwriting,

https://www.youtube.com/watch?v=A8E0Gue8ugY&feature=youtu.be
http://www.maxwell-consulting.com/index.html

Joe Pimbley

training, and quantitative modeling. Follow this link to get Joe’s address to

request addition to his E-mail List for further articles and tutorials.

http://www.maxwell-consulting.com/contact.html

