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Outline

Outline

Time Series Data Analysis

Adding Models to the Data

Adding Concepts to the Model

Ultimate Result: Necessary but not sufficient



Data

Use: Build Model for Treasury Yield
Change Probability

UST 10-Year Yield
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Data

Use: Build Model for Sovereign
Default Probability

Spain Annual Real GDP Growth

1980 1984 1988 199 1996 2000 2004




Data

Use: Build Model for Spread
Widening Probability

iTraxx Series 6, 10-Year
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Proper Use

“A theory is something nobody believes except the

person proposing the theory ....”

- Albert Einstein
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.... whereas an experiment is something everybody
believes except the person performing the

experiment.”

- Albert Einstein

Proper Use



“A theory is something nobody believes except the
person proposing the theory ....

.... whereas an experiment is something everybody
believes except the person performing the
experiment.”

- Albert Einstein
Very True!

Corollary for the Financial World: Do not believe
that models or data determine probabilities for
future market behavior. Rather, it is merely

USEFUL AND IMPERATIVE TO KNOW what

models and data indicate.

Proper Use



Models

Stochastic Models for Time Evolution of Market
Variables begin with Normal and Log-Normal forms

Why?!

Math is straightforward (as these things go)
Consistent with market efficiency
Central Limit Theorem

Good place to start — can explain results



Models

Normal Stochastic Model for yield ywith standard
deviation s, random variable € — N(0,1)

Ay = r At + s e VAt

Log-Normal Stochastic Model for spread Swith
volatility 0, random variable € — N(0,1)

AS = uS At + oS VAt
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Concepts

To elaborate, why does random evolution in time
imply the Normal or Log-Normal distributions?

-

@
& I : ] —
(x-Ax,t) (x,t) (x+Ax,t)

Particle moves randomly with equal
probability a in either direction during
time step At
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Concepts

= =)
[
SBT=m ] i j =
(x-Ax,t) (x,t) (x+Ax,t)
p(x,t + At)

= aplx—Ax,t)+ aplx+Ax,t) + (1 —2a) p(x,t)

Let p(x,9 be the probability that the particle is

at position x at time ¢
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Applying Taylor series, we get this partial
differential equation (PDE) for “diffusion”

Concepts
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(x-Ax,t) (x,t) (x+4x,t)
i 1 —le
= exp |—
P 2V rDt PlaDe

Solution to the PDE for a particle that begins at

x =0

It’s a normal distribution!

The mean position is zero and the standard

deviation is V2Dt

Concepts
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Data

UST 10-Year Yield

The annualized
standard deviation of

the A column values
s 1.1%.

A
s date uslOyear uslOyear
BaSlC methOd to 01/02/62 4.06% -0.03% 1.1%

determine standard 01/03/62 4.03% -0.04%
st s 01/04/62 3.99% 0.03%
deviation for Normal T = oA
Stochastic Process oyos/e2 a0 0.02%
: 01/09/62 4.05% 0.02%
assumptlon 01/10/62 4.07% 0.01%
01/11/62 4.08% 0.00%
01/12/62 4.08% 0.02%
01/15/62 4.10% 0.03%
01/16/62 4.13% -0.01%
01/17/62 4.12% -0.01%
01/18/62 4.11% 0.00%

01/19/62 4.11% -0.02% 15



Data

UST 10-Year Yield

NOT these values ....

. A
DO NOT SlHlplY take date uslOyear uslOyear
the Standard 01/02/62 4.06% -0.03% 1.1%
b A 01/03/62 4.03% -0.04%
deviation of the 01/04/62 3.99% 0.03%
“uleyear” column! 01/05/62 4.02% 0.01%
01/08/62 4.03% 0.02%
That’s not what we 01/09/62 4.05% 0.02%
01/10/62 4.07% 0.01%
want. 01/11/62 4.08% 0.00%
01/12/62 4.08% 0.02%
01/15/62 4.10% 0.03%
01/16/62 4.13% -0.01%
01/17/62 4.12% -0.01%
01/18/62 4.11% 0.00% 16
01/19/62 4.11% -0.02%




UST 10-Year Yield

Data

The annualized
standard deviation of
the A column values

is 18.4%. This is

“volatility” for Log-

Basic method to
determine volatility
for Log-Normal
Stochastic Process
assumption

date
01/02/62
01/03/62
01/04/62
01/05/62
01/08/62
01/09/62
01/10/62
01/11/62
01/12/62
01/15/62
01/16/62
01/17/62
01/18/62
01/19/62

5 o Normal.
Log A log )
(uslOyear) (uslOyear) X
-3.204 -0.007 18.4%
-3.211 -0.010
-3.221 0.007
-3.214 0.002
-3.211 0.005
-3.206 0.005
-3.202 0.002
-3.199 0.000
-3.199 0.005
-3.194 0.007
-3.187 -0.002
-3.189 -0.002
-3.192 0.000
-3.192 -0.005 11



Models

Thus, a Normal Stochastic Model for the 10-year
UST vyield y might use standard deviation s = 1.1%
and the random variable € — N(0,1)

Ay = r At + s e VAt

A Log-Normal Stochastic Model for the 10-year UST
yield ymight use volatility o = 18.4% and the
random variable € — N(0,1)

Ay = pyAt+ oyevVAt

(In either case, it’s customary to specify / determine
the drift terms by a different method.)

18



Models

“And now for something .... completely different.”

- Monty Python

Auto-Regressive (AR) Estimation

19



Models

Auto-Regressive (AR) Estimation

How to predict x; from prior values of x?

® x;?
Xi-3 ;
-
Xi-2 et

- ® X;?

bl -

-
O X ?
: >
ti—q ti—3 ti—z i1 ti
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Models

How to predict x; from prior values of x?

Let the prediction be a linear combination of the
prior values:

p
5C\i =+ zajxi_j
j=1

O x;?
Xi-3 ;
-
Xi—2 o
- ® X;?
Xia @
-
o X ?
: . . . . >
ti—q ti—3 ti—2 ti—1 ti
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Models

How to predict x; from prior values of x?

Let the prediction be a linear combination of the
prior values:

p
5C\i =+ zajxi_j
j=1

The a and the a; are constant values that one
determines to provide the best predictions for
the x;. The integer pis the “order” of the “AR
Model” - designated AR(p).

22



Models

Auto-Regressive Estimation

Is there any concept behind this AR
method? Engineers call it a “Black
Box” technique (and use it!).

We find it useful for adding context
to stochastic models.

23



Let the prediction be a linear combination of the
prior values:

p
521' = a-+ Eajxi_j
j=1

Write the sum of “squared errors”:

N
SSE = Z (x; — %;)?
i=p+1
N p 2
= Z xl—a—Zajxi_]
i=p+1 il

Models

24



Models

Find the a and the @; by minimizing the sum of
squared errors:

0SSE _

da
QSR
aaj o ) ]_ ) ;p
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The equations simplify to the form

Lnjaj = Ino, m=1,--,p

j=1
The elements I'y,; of the “I' matrix” are known from the

historical data values:
N
Fm] =5 z (xi—m_.um)(xi—j_.uj) ) m,j T 0"“'p
i=p+1

with p; = S0 /(N=p) , j=0,,p

Models

26



Models

Worthwhile points to make

e Next step is to solve a linear system

* May not need to write all this software
yourself, but it helps to be aware of nuances
(especially with a small number of data
points)

e User chooses the order p - which raises
further questions

21



Data

UST 10-Year Yield Log

T date (uslOyear)
1 01/02/62 -3.204
14 01/03/62 -3.211
1 01/04/62 -3.221
1 01/05/62 -3.214
i 01/08/62 -3.211
L 01/09/62 -3.206
' 01/10/62 -3.202
01/11/62 -3.199
e e o112/62  -3.199
P E s LR LEERRETRRINRERRE DD 01/15/62 -3.194
01/16/62 -3.187
01/17/62 -3.189
01/18/62 -3.192
01/19/62 -3.192

AR Model Output:

(0.00) alpha Data Points: 12763

the RMSE 1.00 AR(1) RMSE: 18.4%

(annualized) is the Mean Error:  (0.00)

e Correlation: 0.05
VOlatllltV we fOl,lI'ld Akaike: -1.01E+05

earlier
D=l

28



Data

AR Model Output: Notice different results for different p

(0.00) alpha Data Points:
1.00 AR(1) RMSE:
Mean Error:
Correlation:
Akaike
p=1
(0.00) alpha Data Points:
1.05 AR(1) RMSE:
(0.06) AR(2) Mean Error:
0.01 AR(3) Correlation:
0.01 AR(4) Akaike
pieid

12763
18.4%
(0.00)
0.05

: -1.01E+05

12763
18.4%
0.00
(0.00)

: -1.01E+05

(0.00)
1.05
(0.05)

(0.00)
1.05
(0.06)
0.01
(0.02)
0.00
0.01
0.04
(0.03)

alpha
AR(1)
AR(2)

alpha
AR(1)
AR(2)
AR(3)
AR(4)
AR(5)
AR(6)
AR(7)
AR(8)

Data Points: 12763
RMSE: 18.4%
Mean Error:  (0.00)
Correlation: 0.00
Akaike: -1.01E+05

p=2

Data Points: 12763
RMSE: 18.4%
Mean Error:  0.00
Correlation: 0.00
Akaike: -1.01E+05

ge]
I
Qo
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Model
AR Model Output - Observations

The p = 1 case validates lognormal as “good”
Yet the p = 2 case is “better” since correlation
between successive random variables is closer

to zero

No accuracy improvement for higher values of
p-thusit’sbesttouse p=1or p=2

No known stochastic model for p=2 1!



Data

iTraxx Series 6, 10-Year iTraxx S6 10Y Log

300 date iTraxx s6 iTraxx s6
9/19/2006 48.375 3.88
250 9/20/2006 50.55 3.92
200 9/21/2006 50.71 3.93
- 9/22/2006 51.371 3.94
9/25/2006 51.257 3.94
100 9/26/2006 50.984 3.93
. 9/27/2006 50.822 3.93
9/28/2006 51.087 3.93
0 9/29/2006 51.001 3.93
\@QQ’ \@@ 0&% \@@ \@@ \@0 \,@” 10/2/2006 50.979 3.93
N N o o N K\ o 10/3/2006 50.938 3.93
10/4/2006 50.527 3.92
10/5/2006 50.255 3.92

AR Model Output:
the RMSE 0.02 alpha Data Points: 1641
: ? 1.00 AR(1) RMSE: 53.8%
(annuahzed) 18 the Mean Error: 0.00
iTI'aXX extracted Correlation: 0.02
Akaike: -9.45E+03
volatility of 53.8%

p=1

31



Data
AR Model Output: Notice different results for different p

0.02 alpha Data Points: 1641 0.02 alpha Data Points: 1641
1.00 AR(1) RMSE: 53.8% 1.02 AR(1) RMSE: 53.8%
Mean Error:  0.00 (0.02) AR(2) Mean Error:  0.00
Correlation:  0.02 Correlation: 0.00
Akaike: -9.45E+03 Akaike: -9.45E+03
p=1 p=2
0.02 alpha Data Points: 1641 0.02 alpha Data Points: 1641
1.02 AR(1) RMSE: 53.8% 1.02 AR(1) RMSE: 53.7%
(0.06) AR(2) Mean Error:  0.00 (0.06) AR(2) Mean Error:  (0.00)
0.01 AR(3) Correlation: (0.00) 0.01 AR(3) Correlation: (0.00)
0.02 AR(4) Akaike: -9.45E+03 0.02 AR(4) Akaike: -9.44E+03
(0.05)  AR(5)
P 4 0.09 AR(6)
(0.05)  AR(7)
0.02 AR(8)
p=38

32



Model
AR Model Output - Observations

The p = 1 case validates log-normal as “okay” -
but we need to notice non-zero o

The p = 2 case is “better” since correlation
between successive random variables is closer

to zero

Small accuracy improvement for p = 8, but
seems best touse p=1or p=2

No known stochastic model for p=2 1!



Models

Earlier we showed these model choices:

A Normal Stochastic Model for the 10-year UST
yield ymight use standard deviation s = 1.1% and

the random variable € — N(0,1)

Ay = r At + s e VAt

A Log-Normal Stochastic Model for the 10-year UST
yield y might use volatility o = 18.4% and the
random variable € — N(0,1)

Ay = pyAt+ oyevVAt

34



Models

But the AR model gives a different form when p=1
and ai =i 1Y

yi = a+ Z?zlajyi_j+ Se = a+ay;j_q + 8¢
Yisr = o+ aqy; + 8¢
Vier —Yi = Ay = a— (1—ay)y; + S¢

Ay; = w(m — y;)At + seVAt

w = (1—ay))/At and m = a/(1—ay)



But the AR model gives a different form when p=1

and ai * 1:

Ay; = w(m — y,)At + seVAt

w = (1—-ay))/At and m = a/(1—a,)

This is Mean Reversion !

Even though we show a; = 1. 00, the more precise
value is a1 = 0.9966 which implies mean reversion
speed of 0.85 pa with Long-Term Spread m of 135

bps pa.

Models



What’s the point here ?
We posited an initial stochastic process.
We analyzed data with an AR framework.

Historical analysis confirmed some aspects but
also identified a new concept for iTraxx data.

Is this new concept plausible?

Re-cap

31



“Mean Reversion” form:

Ay; = w(m —y,)At + seVAt

Previous “Normal” form:

Ay; = r At + s e VAt

Previous “Log-Normal” form:

Ay; = py; At + oy; e VAt

Re-cap



Models

Attribute of Normal and Log-Normal models is that
they have “easy” closed-form solutions for time #

Ay; = rAt+seVAt

) () = vt +sEe

Ay; = py; At + ayiS\/A_t

2

‘ y(t) = yoexp[<u—%>t+ a\/fe]



Models

For Mean Reversion, though, “solution by
inspection” doesn’t work. We need stochastic
differential equation (SDE) methods

Ay; = w(m — y;)At + seVAt

becomes dy = w(m —y)dt+ s dW(t)

Ber =y - m ‘ dJ = —wPdt +sdW(t)

Common trick: d(@ e®t) = se®tdW(t)

40



Mean Reversion .... Continued

Ornstein - Uhlenbeck

d(@ e®t) = se®tdW(t)

t

Integrate: Je® = P+s fe“” dW (1)
0

How to do this strange integration 77

Models

M



Models

Strange Integration .....
Think of a Riemann Sum

t

Je“”dW(T) EEE) Ze“”"AW
0 [

‘ Z e®ti (\;—Al_) AT

Just a sum of independent, normally
distributed random variates

42



The Riemann Sum is Normally distributed

S
Mean {Ze L <\/T_T) AT} =

l

8.
Var Ze“”i —l> e 262“’” AT
{ : <‘/E }

These results tell us what to do with
the integral

Models

43



Back to the strange integral ....

t
Mean fe“”dW(r) — (]
0

t t
Var je“’f dw(z) ; = Jez“” dr
0 0

This last integral for the variance is
straightforward .... we get

eZa)t i |

2w

Models



Models

Final Result for Mean Reversion

dy = w(m—y)dt+sdW(t)

has the solution

—2wt\ 1/2
A ~wt _ ,-wt L aesn
y(t) yoe ®+m(l—-—e"®)+s o 5

439



Comparison
Normal: y() = y, +rt+syte
72
Log-Normal: y(t) = y,exp Ku - 7) t+ ot e]

Mean Reversion:

1 — p-20t\ /2
y(t) = yoe Pt +m(l—e ) +s < o ) &

Models

46



Re-cap

Ultimate Outcome

o “Mean Reversion” is likely the best choice when
the data analysis shows ¢ # 0 and a; # 1

e The Mean Reversion Level is taken from the data
and not “made up”

 Impact on a forward projected probability

distribution is huge for tail events at long time -
which is further reason for caution

41




Spain Annual Real GDP Growth

1980 1984 1988 199 1996 2000 2004

AR Model Output:
GDP data differs 0.63
markedly from 272
earlier examples -
what does that
mean?

date
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993

alpha Data Points:
AR(1) RMSE:
Mean Error:
Correlation:

Data

Spain
A GDP %
1.203
-0.408
1.239
1.652
1.698
2.362
3.432
5.709
5.285
5.004
3.847
2.525
0.851
-1.314

33
1.60
0.00
0.12

Akaike: 6.81E+01

p=1

48



AR Model Output: Notice different results for different p

0.63 alpha Data Points: 33 0.93 alpha Data Points: 33
0.72 AR(1) RMSE: 1.60 0.84 AR(1) RMSE: 155
Mean Error:  0.00 (0.21) AR(2) Mean Error:  (0.00)
Correlation: 0.12 Correlation:  0.05
Akaike: 6.81E+01 Akaike: 6.84E+01
P51 D=2
1.58 alpha Data Points: 33 2.15 alpha Data Points: 33
0.88 AR(1) RMSE: 1.47 0.90 AR(1) RMSE: 1.44
(0.47) AR(2) Mean Error:  (0.00) (0.61) AR(2) Mean Error:  (0.00)
0.48 AR(3) Correlation: (0.02) 0.69 AR(3) Correlation: (0.01)
(0.47) AR(4) Akaike: 6.99E+01 (0.84) AR(4) Akaike: 8.08E+01
0.44 AR(5)
(0.57)  AR(6)
P 4 0.52 AR(7)
(0.34)  AR(8)
R

Data

49



Data

Can we trust the data?

Different data sources and situations deserve
different levels of trust

Sovereign economic data is not high on the
“trust scale” - Greece, Argentina, China, IMF,

ECB

Even with best efforts, sovereign economic
data has low precision

Behavior as p increases is odd - perhaps due to
small number of data points



Concept

Conceptual Questions for Spanish GDP Data

When building a model for sovereign default
risk, how do we use historical data over a
period of no default! Ignore mean reversion!?

Do we use or ignore the pre-EURO period?

ol



Unsolved Problem re Spanish GDP Data

With colleagues, we created a sovereign default
model that treats GDP growth as a random
walk (normal distribution)

To BACKTEST the model, we chose Spain in

an earlier year such as 2006 and found a
problem

The observed RMSE for GDP change for 1980
2006 is just 1.2%. But actual GDP changes in
years beginning 2007, 2008, and 2009 are 2x,
4x, and 3x this 1.2% value!

Concept

92



Concept

Unsolved Problem re Spanish GDP Data

Large actual GDP changes imply that the model

is unsatisfactory OR that the data should be
“de-weighted”

All ideas are welcome!



End

Conclusion

>  Time Series Data Analysis

»  Treasury yields, CDS indices, Sovereign GDP

>  Data analysis is necessary to understand risk positions,
trading strategies, monetary and fiscal policies, et cetera

>  But data analysis is not sufficient, it will not provide
models, concepts, probability distributions, et cetera

o4



