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Outline

 Time Series Data Analysis

 Adding Models to the Data

 Adding Concepts to the Model

 Ultimate Result:  Necessary but not sufficient
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Data

Use:  Build Model for Treasury Yield 
Change Probability



Data

Use:  Build Model for Sovereign 
Default Probability
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Data

Use:  Build Model for Spread 
Widening Probability



Proper Use

“A theory is something nobody believes except the 
person proposing the theory ….”

- Albert Einstein
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Proper Use

“A theory is something nobody believes except the 
person proposing the theory ….

…. whereas an experiment is something everybody 
believes except the person performing the 

experiment.”

- Albert Einstein

Very True!

Corollary for the Financial World:  Do not believe 
that models or data determine probabilities for 

future market behavior.  Rather, it is merely 
USEFUL AND IMPERATIVE TO KNOW what 

models and data indicate.



Models

Stochastic Models for Time Evolution of Market 
Variables begin with Normal and Log-Normal forms

Why?

Math is straightforward (as these things go)

Consistent with market efficiency

Central Limit Theorem

Good place to start – can explain results



Models

Normal Stochastic Model for yield y with standard 
deviation s, random variable ε→ N(0,1)

∆𝑦 = 𝑟 ∆𝑡 + 𝑠 𝜀 ∆𝑡

∆𝑆 = 𝜇 𝑆 ∆𝑡 + 𝜎 𝑆 𝜀 ∆𝑡

Log-Normal Stochastic Model for spread S with 
volatility σ, random variable ε→ N(0,1)



Concepts

To elaborate, why does random evolution in time 
imply the Normal or Log-Normal distributions?

(x,t) (x+Δx,t)(x-Δx,t)

Particle moves randomly with equal 
probability α in either direction during 

time step Δt



Concepts

(x,t) (x+Δx,t)(x-Δx,t)

Let p(x,t) be the probability that the particle is 
at position x at time t

𝑝 𝑥, 𝑡 + ∆𝑡

= 𝛼 𝑝 𝑥 − ∆𝑥, 𝑡 + 𝛼 𝑝 𝑥 + ∆𝑥, 𝑡 + 1 − 2𝛼 𝑝 𝑥, 𝑡



Concepts

(x,t) (x+Δx,t)(x-Δx,t)

Applying Taylor series, we get this partial 
differential equation (PDE) for “diffusion”

𝜕𝑝

𝜕𝑡
= 𝛼

∆𝑥 2

∆𝑡

𝜕2𝑝

𝜕𝑥2 = 𝐷
𝜕2𝑝

𝜕𝑥2



Concepts

(x,t) (x+Δx,t)(x-Δx,t)

Solution to the PDE for a particle that begins at 
x = 0

It’s a normal distribution!

The mean position is zero and the standard 
deviation is 𝟐𝑫𝒕

𝑝 𝑥, 𝑡 =
1

2 𝜋𝐷𝑡
exp

−𝑥2

4𝐷𝑡



Data

Basic method to 
determine standard 

deviation for Normal 
Stochastic Process 

assumption

Δ

date us10year us10year

01/02/62 4.06% -0.03% 1.1%

01/03/62 4.03% -0.04%

01/04/62 3.99% 0.03%

01/05/62 4.02% 0.01%

01/08/62 4.03% 0.02%

01/09/62 4.05% 0.02%

01/10/62 4.07% 0.01%

01/11/62 4.08% 0.00%

01/12/62 4.08% 0.02%

01/15/62 4.10% 0.03%

01/16/62 4.13% -0.01%

01/17/62 4.12% -0.01%

01/18/62 4.11% 0.00%

01/19/62 4.11% -0.02%

The annualized 
standard deviation of 
the Δ column values 

is 1.1%.



Data

Do NOT simply take 
the standard 

deviation of the 
“us10year” column!  
That’s not what we 

want.

Δ

date us10year us10year

01/02/62 4.06% -0.03% 1.1%

01/03/62 4.03% -0.04%

01/04/62 3.99% 0.03%

01/05/62 4.02% 0.01%

01/08/62 4.03% 0.02%

01/09/62 4.05% 0.02%

01/10/62 4.07% 0.01%

01/11/62 4.08% 0.00%

01/12/62 4.08% 0.02%

01/15/62 4.10% 0.03%

01/16/62 4.13% -0.01%

01/17/62 4.12% -0.01%

01/18/62 4.11% 0.00%

01/19/62 4.11% -0.02%

NOT these values ….



Data

Basic method to 
determine volatility 

for Log-Normal 
Stochastic Process 

assumption

The annualized 
standard deviation of 
the Δ column values 

is 18.4%.  This is 
“volatility” for Log-

Normal.

Log Δ Log

date (us10year) (us10year)

01/02/62 -3.204 -0.007 18.4%

01/03/62 -3.211 -0.010

01/04/62 -3.221 0.007

01/05/62 -3.214 0.002

01/08/62 -3.211 0.005

01/09/62 -3.206 0.005

01/10/62 -3.202 0.002

01/11/62 -3.199 0.000

01/12/62 -3.199 0.005

01/15/62 -3.194 0.007

01/16/62 -3.187 -0.002

01/17/62 -3.189 -0.002

01/18/62 -3.192 0.000

01/19/62 -3.192 -0.005



Models

Thus, a Normal Stochastic Model for the 10-year 
UST yield y might use standard deviation s = 1.1%

and the random variable ε→ N(0,1)

∆𝑦 = 𝑟 ∆𝑡 + 𝑠 𝜀 ∆𝑡

∆y = 𝜇 y ∆𝑡 + 𝜎 y 𝜀 ∆𝑡

A Log-Normal Stochastic Model for the 10-year UST 
yield y might use volatility σ = 18.4% and the 

random variable ε→ N(0,1)

(In either case, it’s customary to specify / determine 
the drift terms by a different method.)



Models

“And now for something …. completely different.”

- Monty Python

Auto-Regressive (AR) Estimation



Models

Auto-Regressive (AR) Estimation

How to predict 𝒙𝒊 from prior values of x ?

𝑡𝑖𝑡𝑖−1𝑡𝑖−2𝑡𝑖−3𝑡𝑖−4

𝑥𝑖−1𝑥𝑖−2

𝑥𝑖−3

𝑥𝑖−4

𝑥𝑖 ?

𝑥𝑖 ?

𝑥𝑖 ?



Models

How to predict 𝒙𝒊 from prior values of x ?

Let the prediction be a linear combination of the 
prior values:

𝑡𝑖𝑡𝑖−1𝑡𝑖−2𝑡𝑖−3𝑡𝑖−4

𝑥𝑖−1𝑥𝑖−2

𝑥𝑖−3

𝑥𝑖−4

𝑥𝑖 ?

𝑥𝑖 ?

𝑥𝑖 ?

 𝑥𝑖 = 𝛼 +  

𝑗=1

𝑝

𝑎𝑗 𝑥𝑖−𝑗



Models

How to predict 𝒙𝒊 from prior values of x ?

Let the prediction be a linear combination of the 
prior values:

 𝑥𝑖 = 𝛼 +  

𝑗=1

𝑝

𝑎𝑗 𝑥𝑖−𝑗

The α and the 𝒂𝒋 are constant values that one 
determines to provide the best predictions for 

the 𝒙𝒊.  The integer p is the “order” of the “AR 
Model” – designated AR(p).



Models

Auto-Regressive Estimation

Is there any concept behind this AR 
method?  Engineers call it a “Black 

Box” technique (and use it!).

We find it useful for adding context 
to stochastic models.



Models

Let the prediction be a linear combination of the 
prior values:

 𝑥𝑖 = 𝛼 +  

𝑗=1

𝑝

𝑎𝑗 𝑥𝑖−𝑗

𝑆𝑆𝐸 =  

𝑖=𝑝+1

𝑁

𝑥𝑖 −  𝑥𝑖
2

=  

𝑖=𝑝+1

𝑁

𝑥𝑖 − 𝛼 −  

𝑗=1

𝑝

𝑎𝑗 𝑥𝑖−𝑗

2

Write the sum of “squared errors”:



Models

Find the α and the 𝒂𝒋 by minimizing the sum of 
squared errors:

𝜕 𝑆𝑆𝐸

𝜕𝛼
= 0

𝜕 𝑆𝑆𝐸

𝜕𝑎𝑗
= 0 , j = 1,⋯ , 𝑝



Models

The equations simplify to the form

 

𝑗=1

𝑝

𝛤𝑚𝑗 𝑎𝑗 = 𝛤𝑚0 , 𝑚 = 1,⋯ , 𝑝

The elements 𝜞𝒎𝒋 of the “Γ matrix” are known from the

historical data values:

𝛤𝑚𝑗 =  

𝑖=𝑝+1

𝑁

𝑥𝑖−𝑚 − 𝜇𝑚 𝑥𝑖−𝑗 − 𝜇𝑗 , 𝑚, 𝑗 = 0,⋯ , 𝑝

with 𝜇𝑗 =   𝑙=𝑝+1
𝑁 𝑥𝑙−𝑗 𝑁 − 𝑝 , 𝑗 = 0,⋯ , 𝑝



Models

Worthwhile points to make

• Next step is to solve a linear system

• May not need to write all this software 
yourself, but it helps to be aware of nuances 
(especially with a small number of data 
points)

• User chooses the order p – which raises 
further questions



Data

AR Model Output:  
the RMSE 

(annualized) is the 
volatility we found 

earlier

Log

date (us10year)

01/02/62 -3.204

01/03/62 -3.211

01/04/62 -3.221

01/05/62 -3.214

01/08/62 -3.211

01/09/62 -3.206

01/10/62 -3.202

01/11/62 -3.199

01/12/62 -3.199

01/15/62 -3.194

01/16/62 -3.187

01/17/62 -3.189

01/18/62 -3.192

01/19/62 -3.192

(0.00) alpha Data Points: 12763

1.00 AR(1) RMSE: 18.4%

Mean Error: (0.00)

Correlation: 0.05

Akaike: -1.01E+05

p = 1



Data
AR Model Output:  Notice different results for different p

(0.00) alpha Data Points: 12763

1.00 AR(1) RMSE: 18.4%

Mean Error: (0.00)

Correlation: 0.05

Akaike: -1.01E+05

(0.00) alpha Data Points: 12763

1.05 AR(1) RMSE: 18.4%

(0.05) AR(2) Mean Error: (0.00)

Correlation: 0.00

Akaike: -1.01E+05

(0.00) alpha Data Points: 12763

1.05 AR(1) RMSE: 18.4%

(0.06) AR(2) Mean Error: 0.00

0.01 AR(3) Correlation: 0.00

(0.02) AR(4) Akaike: -1.01E+05

0.00 AR(5)

0.01 AR(6)

0.04 AR(7)

(0.03) AR(8)

(0.00) alpha Data Points: 12763

1.05 AR(1) RMSE: 18.4%

(0.06) AR(2) Mean Error: 0.00

0.01 AR(3) Correlation: (0.00)

0.01 AR(4) Akaike: -1.01E+05

p = 8

p = 2

p = 4

p = 1



Model
AR Model Output - Observations

• The p = 1 case validates log-normal as “good”

• Yet the p = 2 case is “better” since correlation 
between successive random variables is closer 
to zero

• No accuracy improvement for higher values of 
p – thus it’s best to use p = 1 or p = 2

• No known stochastic model for p = 2 ?!



Data

AR Model Output:  
the RMSE 

(annualized) is the 
iTraxx extracted 

volatility of 53.8%

0

50

100

150

200

250

300

iTraxx Series 6, 10-Year iTraxx S6 10Y Log

date iTraxx s6 iTraxx s6
9/19/2006 48.375 3.88

9/20/2006 50.55 3.92

9/21/2006 50.71 3.93

9/22/2006 51.371 3.94

9/25/2006 51.257 3.94

9/26/2006 50.984 3.93

9/27/2006 50.822 3.93

9/28/2006 51.087 3.93

9/29/2006 51.001 3.93

10/2/2006 50.979 3.93

10/3/2006 50.938 3.93

10/4/2006 50.527 3.92

10/5/2006 50.255 3.92

0.02 alpha Data Points: 1641

1.00 AR(1) RMSE: 53.8%

Mean Error: 0.00

Correlation: 0.02

Akaike: -9.45E+03

p = 1



Data
AR Model Output:  Notice different results for different p

0.02 alpha Data Points: 1641

1.00 AR(1) RMSE: 53.8%

Mean Error: 0.00

Correlation: 0.02

Akaike: -9.45E+03

0.02 alpha Data Points: 1641

1.02 AR(1) RMSE: 53.8%

(0.02) AR(2) Mean Error: 0.00

Correlation: 0.00

Akaike: -9.45E+03

0.02 alpha Data Points: 1641

1.02 AR(1) RMSE: 53.7%

(0.06) AR(2) Mean Error: (0.00)

0.01 AR(3) Correlation: (0.00)

0.02 AR(4) Akaike: -9.44E+03

(0.05) AR(5)

0.09 AR(6)

(0.05) AR(7)

0.02 AR(8)

0.02 alpha Data Points: 1641

1.02 AR(1) RMSE: 53.8%

(0.06) AR(2) Mean Error: 0.00

0.01 AR(3) Correlation: (0.00)

0.02 AR(4) Akaike: -9.45E+03

p = 1 p = 2

p = 4

p = 8



Model
AR Model Output - Observations

• The p = 1 case validates log-normal as “okay” –
but we need to notice non-zero α

• The p = 2 case is “better” since correlation 
between successive random variables is closer 
to zero

• Small accuracy improvement for p = 8, but 
seems best to use p = 1 or p = 2

• No known stochastic model for p = 2 ?!



Models

A Normal Stochastic Model for the 10-year UST 
yield y might use standard deviation s = 1.1% and 

the random variable ε→ N(0,1)

∆𝑦 = 𝑟 ∆𝑡 + 𝑠 𝜀 ∆𝑡

∆y = 𝜇 y ∆𝑡 + 𝜎 y 𝜀 ∆𝑡

A Log-Normal Stochastic Model for the 10-year UST 
yield y might use volatility σ = 18.4% and the 

random variable ε→ N(0,1)

Earlier we showed these model choices:



Models

But the AR model gives a different form when p = 1 
and 𝒂𝟏 ≠ 𝟏:

𝑦𝑖 = 𝛼 +  𝑗=1
𝑝

𝑎𝑗 𝑦𝑖−𝑗 +  𝑠𝜀 =  𝛼 + 𝑎1𝑦𝑖−1 +  𝑠𝜀

𝑦𝑖+1 = α + 𝑎1𝑦𝑖 +  𝑠𝜀

𝑦𝑖+1 − 𝑦𝑖 = ∆𝑦𝑖 = α − 1 − 𝑎1 𝑦𝑖 +  𝑠𝜀

∆𝑦𝑖 = 𝜔 𝑚 − 𝑦𝑖 ∆𝑡 + 𝑠𝜀 ∆𝑡

𝜔 =  1 − 𝑎1 ∆𝑡 and    𝑚 =  𝛼 1 − 𝑎1



Models

But the AR model gives a different form when p = 1 
and 𝒂𝟏 ≠ 𝟏:

∆𝑦𝑖 = 𝜔 𝑚 − 𝑦𝑖 ∆𝑡 + 𝑠𝜀 ∆𝑡

𝜔 =  1 − 𝑎1 ∆𝑡 and    𝑚 =  𝛼 1 − 𝑎1

This is Mean Reversion !

Even though we show 𝒂𝟏 = 𝟏. 𝟎𝟎, the more precise 
value is 𝒂𝟏 = 𝟎. 𝟗𝟗𝟔𝟔 which implies mean reversion 

speed of 0.85 pa with Long-Term Spread m of 135 
bps pa.



Re-cap

What’s the point here ?

• We posited an initial stochastic process.

• We analyzed data with an AR framework.

• Historical analysis confirmed some aspects but 
also identified a new concept for iTraxx data.

• Is this new concept plausible?



Re-cap

“Mean Reversion” form:

∆𝑦𝑖 = 𝜔 𝑚 − 𝑦𝑖 ∆𝑡 + 𝑠𝜀 ∆𝑡

∆𝑦𝑖 = 𝑟 ∆𝑡 + 𝑠 𝜀 ∆𝑡

Previous “Normal” form:

Previous “Log-Normal” form:

∆𝑦𝑖 = 𝜇 𝑦𝑖 ∆𝑡 + 𝜎 𝑦𝑖 𝜀 ∆𝑡



Models

Attribute of Normal and Log-Normal models is that 
they have “easy” closed-form solutions for time t:

𝑦 𝑡 = 𝑦𝑜 + 𝑟𝑡 + 𝑠 𝑡 𝜀

∆𝑦𝑖 = 𝑟 ∆𝑡 + 𝑠 𝜀 ∆𝑡

∆𝑦𝑖 = 𝜇 𝑦𝑖 ∆𝑡 + 𝜎 𝑦𝑖 𝜀 ∆𝑡

𝑦 𝑡 = 𝑦𝑜 exp 𝜇 −
𝜎2

2
𝑡 + 𝜎 𝑡 𝜀



Models

For Mean Reversion, though, “solution by 
inspection” doesn’t work.  We need stochastic 

differential equation (SDE) methods

∆𝑦𝑖 = 𝜔 𝑚 − 𝑦𝑖 ∆𝑡 + 𝑠𝜀 ∆𝑡

becomes d𝑦 = 𝜔 𝑚 − 𝑦 𝑑𝑡 + 𝑠 𝑑𝑊 𝑡

Let  𝑦 = 𝑦 − 𝑚 d 𝑦 = −𝜔 𝑦𝑑𝑡 + 𝑠 𝑑𝑊 𝑡

d  𝑦 𝑒𝜔𝑡 = 𝑠 𝑒𝜔𝑡 𝑑𝑊 𝑡Common trick:



Models

Mean Reversion …. Continued

Ornstein - Uhlenbeck

Integrate:

How to do this strange integration ??

 𝑦 𝑒𝜔𝑡 =  𝑦0 + 𝑠  

0

𝑡

𝑒𝜔𝜏 𝑑𝑊 𝜏

d  𝑦 𝑒𝜔𝑡 = 𝑠 𝑒𝜔𝑡 𝑑𝑊 𝑡



Models

Strange Integration …..

Think of a Riemann Sum

 

0

𝑡

𝑒𝜔𝜏 𝑑𝑊 𝜏  

𝑖

𝑒𝜔𝜏𝑖 ∆𝑊

 

𝑖

𝑒𝜔𝜏𝑖
𝜀𝑖

∆𝜏
∆𝜏

Just a sum of independent, normally 
distributed random variates



Models

The Riemann Sum is Normally distributed

𝑀𝑒𝑎𝑛  

𝑖

𝑒𝜔𝜏𝑖
𝜀𝑖

∆𝜏
∆𝜏 = 0

These results tell us what to do with 
the integral

𝑉𝑎𝑟  

𝑖

𝑒𝜔𝜏𝑖
𝜀𝑖

∆𝜏
∆𝜏 =  

𝑖

𝑒2𝜔𝜏𝑖 ∆𝜏



Models

Back to the strange integral ….

𝑀𝑒𝑎𝑛  

0

𝑡

𝑒𝜔𝜏 𝑑𝑊 𝜏 = 0

This last integral for the variance is 
straightforward …. we get

𝑉𝑎𝑟  

0

𝑡

𝑒𝜔𝜏 𝑑𝑊 𝜏 =  

0

𝑡

𝑒2𝜔𝜏 𝑑𝜏

𝑒2𝜔𝑡 − 1

2𝜔



Models

Final Result for Mean Reversion

has the solution

d𝑦 = 𝜔 𝑚 − 𝑦 𝑑𝑡 + 𝑠 𝑑𝑊 𝑡

𝑦 𝑡 = 𝑦0𝑒
−𝜔𝑡 + 𝑚 1 − 𝑒−𝜔𝑡 + 𝑠

1 − 𝑒−2𝜔𝑡

2𝜔

 1 2

𝜀



Models

Comparison

𝑦 𝑡 = 𝑦𝑜 + 𝑟𝑡 + 𝑠 𝑡 𝜀

𝑦 𝑡 = 𝑦𝑜 exp 𝜇 −
𝜎2

2
𝑡 + 𝜎 𝑡 𝜀

Normal:

Log-Normal:

𝑦 𝑡 = 𝑦0𝑒
−𝜔𝑡 + 𝑚 1 − 𝑒−𝜔𝑡 + 𝑠

1 − 𝑒−2𝜔𝑡

2𝜔

 1 2

𝜀

Mean Reversion:



Re-cap

Ultimate Outcome

• “Mean Reversion” is likely the best choice when 
the data analysis shows 𝜶 ≠ 𝟎 𝒂𝒏𝒅 𝒂𝟏 ≠ 𝟏

• The Mean Reversion Level is taken from the data 
and not “made up”

• Impact on a forward projected probability 
distribution is huge for tail events at long time –
which is further reason for caution



Data

AR Model Output:  
GDP data differs 
markedly from 

earlier examples –
what does that 

mean? p = 1

-6

-4

-2

0

2

4

6

8

1980 1984 1988 1992 1996 2000 2004 2008 2012

Spain Annual Real GDP Growth Spain

date Δ GDP %

1980 1.203

1981 -0.408

1982 1.239

1983 1.652

1984 1.698

1985 2.362

1986 3.432

1987 5.709

1988 5.285

1989 5.004

1990 3.847

1991 2.525

1992 0.851

1993 -1.314

0.63 alpha Data Points: 33

0.72 AR(1) RMSE: 1.60

Mean Error: 0.00

Correlation: 0.12

Akaike: 6.81E+01



Data
AR Model Output:  Notice different results for different p

p = 1 p = 2

p = 4

p = 8

0.63 alpha Data Points: 33

0.72 AR(1) RMSE: 1.60

Mean Error: 0.00

Correlation: 0.12

Akaike: 6.81E+01

0.93 alpha Data Points: 33

0.84 AR(1) RMSE: 1.55

(0.21) AR(2) Mean Error: (0.00)

Correlation: 0.05

Akaike: 6.84E+01

1.58 alpha Data Points: 33

0.88 AR(1) RMSE: 1.47

(0.47) AR(2) Mean Error: (0.00)

0.48 AR(3) Correlation: (0.02)

(0.47) AR(4) Akaike: 6.99E+01

2.15 alpha Data Points: 33

0.90 AR(1) RMSE: 1.44

(0.61) AR(2) Mean Error: (0.00)

0.69 AR(3) Correlation: (0.01)

(0.84) AR(4) Akaike: 8.08E+01

0.44 AR(5)

(0.57) AR(6)

0.52 AR(7)

(0.34) AR(8)



Data
Can we trust the data?

• Different data sources and situations deserve 
different levels of trust

• Sovereign economic data is not high on the 
“trust scale” – Greece, Argentina, China, IMF, 
ECB

• Even with best efforts, sovereign economic 
data has low precision

• Behavior as p increases is odd – perhaps due to 
small number of data points



Concept

Conceptual Questions for Spanish GDP Data

• When building a model for sovereign default 
risk, how do we use historical data over a 
period of no default?  Ignore mean reversion?

• Do we use or ignore the pre-EURO period?



Concept
Unsolved Problem re Spanish GDP Data

• With colleagues, we created a sovereign default 
model that treats GDP growth as a random 
walk (normal distribution)

• To BACKTEST the model, we chose Spain in 
an earlier year such as 2006 and found a 
problem

• The observed RMSE for GDP change for 1980-
2006 is just 1.2%.  But actual GDP changes in 
years beginning 2007, 2008, and 2009 are 2x, 
4x, and 3x this 1.2% value!



Concept

Unsolved Problem re Spanish GDP Data

• Large actual GDP changes imply that the model 
is unsatisfactory OR that the data should be 
“de-weighted”

• All ideas are welcome!



End

 Time Series Data Analysis

 Treasury yields, CDS indices, Sovereign GDP

 Data analysis is necessary to understand risk positions, 
trading strategies, monetary and fiscal policies, et cetera

 But data analysis is not sufficient, it will not provide 
models, concepts, probability distributions, et cetera

Conclusion


