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Introduction 

Financial risk analysis often focuses on calculating the probability of loss or 

expected loss of a given risky transaction or portfolio of transactions.  In structured 

finance applications, these calculations may include the presence of a loss buffer 

(otherwise known as “equity”) when the calculations pertain to a risk position that is not 

the first loss.  The analyst compiles the PDF (probability density function) for the loss 

process and integrates this PDF with the desired risk measure to give a loss probability 

or expected loss with or without the presence of an equity loss buffer. 

While this process may seem straightforward, there are many, many practical 

obstacles.  The analyst must make many simplifying assumptions to the point that the 

problem that is “solved” may bear little resemblance to the true problem.  The greatest 

challenge, then, is to possess the judgment to interpret what meaning the solution to the 

approximate problem has for the true problem.  Two lesser but significant problems are 

solution complexity (including calculation time) and difficulty of explaining results (and 

uncertainty of results) to colleagues. 

We‟ve stumbled across Gauss-Hermite Quadrature (GHQ) as a contribution to 

these two “lesser but significant problems” of financial analysis.  GHQ permits us to use 

traditional “risk management stress tests” to determine approximations of the PDF 

integrations necessary for calculating the various default probabilities and expected 

losses of financial risk analysis.  GHQ saves calculation time and also performs 

calculations that are not otherwise practical.  Given the similarity to familiar stress tests, 

it will likely be easier to explain results to a wider audience. 

We proceed here in several steps.  First, Appendix I introduces Hermite 

polynomials by discussing their origin and several relevant properties.  Next, Appendix 

II discusses the numerical integration procedure known as Gauss Quadrature.  GHQ is 

simply one specific implementation of Gauss Quadrature.  Finally, we apply GHQ to a 

few typical financial risk analyses.  It is not necessary to read and understand 

Appendices I and II to use this GHQ technique.  These appendices derive the equation 

(1) approximation of the next section and discuss its accuracy. 

                                                           
*
 Mr. Pimbley is Executive Vice President, Head of Institutional Risk, at ACA Capital in New York.  He 

acknowledges gratefully the assistance of ACA colleague Eduardo Robinovich  for the calculations of the structured 

finance example in this article. 
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Risk Analysis Examples 

The material in the appendices is not new.  In fact, it was all discovered more 

than 150 years ago.
*
  The reader need only understand equation (A-8) which we reprise 

(and shorten) here as equation (1): 
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As will become clear shortly, the expression on the left-hand side of (1) will represent a 

risk measure (such as “expected loss”) while the right-hand side is an easily calculable 

approximation to the risk measure.  The analyst chooses the value of n for the 

approximation (with higher values generally giving greater accuracy).  The function 

 xf  is known as are all the iw  (which sum to  ) and ix . 

Equation (1) looks simple given all the work that went into deriving it.  In fact, 

there‟s a very simple interpretation of equation (1) that, while wrong, is “usefully 

wrong”.  Specifically, it‟s tempting to consider the ix  as “possible values of x” (which 

they are) and the iw  as associated “probabilities of x being equal to ix ”.  Of course, 

we‟d need to normalize the iw  through division by   for these iw  to look like 

probabilities (so that they would add to unity).  We give the normalized iw  the notation 

iŵ  with the definition ii ww   ˆ  .  With this interpretation, equation (1) tells us to 

“add up the function evaluations at the points ix  weighted with the „probabilities‟ iŵ , 

and then multiply by  , to get the integral result we seek”.
#
 

In financial risk analysis, these ix  will be what we normally call “stresses”.  As a 

typical example, we may choose five yield curve scenarios:  “forward LIBOR”; 

“forward LIBOR plus or minus one standard deviation”; and “forward LIBOR plus or 

minus two standard deviations”.  These “stress scenarios” of the financial risk world are 

analogous to the five zeroes of the fifth-order Hermite polynomial  xH5  (which also 

include zero as the middle value and are otherwise symmetric about zero).  We say 

“analogous” since the actual zeroes of  xH5  are not 2 ,1 ,0 ,1 ,2  .  Rather, they 

are 02.2 ,96.0 ,0 ,96.0 ,02.2   (rounded to the nearest one-hundredth).  (We find it 

                                                           
*
 Useful references are http://mathworld.wolfram.com/Hermite-GaussQuadrature.html, 

http://www.sosmath.com/diffeq/series/series06/series06.html, and 

http://www.maths.ox.ac.uk/~murc/lecture_notes/b5die/index.html . 
#
 But let us be clear that the interpretation is wrong.  A specific iŵ  does not represent a probability that x will have 

the value ix .  But we‟ll get a very good approximation for the integral calculation if we make this assumption.  

There are other examples in modeling of such “usefully wrong” assumptions (e.g., thinking of an electron as a small, 

negatively charged sphere).  There should be a special word to describe them … perhaps “Potemkin probabilities” in 

this case? 

http://mathworld.wolfram.com/Hermite-GaussQuadrature.html
http://www.sosmath.com/diffeq/series/series06/series06.html
http://www.maths.ox.ac.uk/~murc/lecture_notes/b5die/index.html


 3 

to be a fascinating coincidence that these actual five zeroes are so close to the industry‟s 

standard stresses.) 

In broad outline, then, our “plan” is to run our familiar stress cases on any risk 

situation of interest.  We‟ll just adjust the stress cases somewhat (as with the zeroes of 

 xH5  above).  Then, by assigning the pseudo-probabilities to the stresses (which we‟ll 

now call “GHQ stresses”), we‟ll be able to compute approximate integral risk measures 

with equation (1).  With essentially no additional work, we get more information and we 

bridge the gap of “stress testing versus probabilistic outcomes”. 

In the discussion of this section, however, we‟ve forgotten to make one key 

point.  The integral of equation (1) has the term  2exp x .  We wanted it there!  That‟s 

why we‟re working with Hermite polynomials.  This exponential belongs in our analysis 

as long as the underlying stochastic process is normal (Gaussian) or log-normal.  In both 

of these cases we can re-write our integral risk measures to have the form of equation 

(1).  The great majority of market variables (equities, currencies, interest rates, default 

swap spreads, et cetera) are expressible as normal or log-normal variables.  Two 

exceptions are stochastic processes for bond prices or for default recoveries of bonds 

and loans.  Further, there do exist alternate processes for the variables above that are not 

normal or log-normal (e.g., Cox-Ingersoll-Ross model for the yield curve).  Hence, this 

project assumes that the analyst is comfortable with normal or log-normal treatments.  

Our earlier discussion of five yield curve stresses presumes that we will employ a one-

factor, log-normal model for movements in the yield curve. 

The PDF for a random variable X that obeys a normal distribution  xg  is 

    22
2exp 

2

1
    


 xxg     (2) 

where  is expected value of X (also written as  XE ) and  is the standard deviation of 

X.  (Note that we follow the standard convention to use upper case to refer to a random 

variable and its properties and lower case to refer to specific values as they appear in 

equation (2).) 

As we‟ve said, the random variable X obeys a normal distribution.  If we‟re 

studying a random variable that is log-normal, it‟s easier to keep using X (the normal 

random variable).  For example, a stock price S follows a log-normal distribution.  We 

can simply write  XS expS  0  and S will behave “correctly” while X obeys equation 

(2) as long as we set appropriate values for  and . 

Finally, as a last step before we consider some real problems, let‟s show how the 

GHQ approximation will appear.  Think of  xf  as the function we will integrate.  It 

may be “loss” or “expected positive value” or something similar.  The function  xf  

will generally be fairly complex since it will include the value of a derivative or bond or 

equity which may require a Monte Carlo simulation or an Intex call.  Further, as we‟ve 
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said, the “x” is normally distributed.  The function  xf  will also convert this normal 

random variable to a log-normal variant when necessary.  With all of this, we find 

     
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where the summation is over all the zeroes of the desired order of Gauss-Hermite 

quadrature.  Note that we‟ve written equation (3) in terms of the normalized GHQ 

weights iŵ . 

Example:  Gain of an Equity Investment 

Here are two questions we can answer analytically.  What is the probability that 

an equity will gain value over a given time period (with known expected appreciation 

rate and volatility)?  What is the expected gain for this same equity? 

In the notation of equation (2), we can derive 

Probability of Gain      1     (4a) 

Expected Gain    
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e    (4b) 

In equation (4b), we‟ve written the expected gain as a ratio to the original stock price.  

The expression  x  is the cumulative normal distribution function.  Since we can 

derive (4a) and (4b), there‟s no need for an approximation such as GHQ.  But it‟s 

always helpful to test an approximation method against exact results (when you can find 

them). 

In applying equation (3), the function  xf  is  xH  for the “probability of gain” 

and   1 xexH  for the “expected gain”.  This function  xH  is the Heaviside function 

(also known as the step function) which is zero for x less than zero and unity for x 

greater than zero.  Hence, we need only use these function evaluations in (3) to get GHQ 

approximations to (4a) and (4b).  Numerical results are interesting!  See the table below: 
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Method  Probability of Gain  Expected Gain 

     

GHQ – 2  0.500  0.114 

GHQ – 3  0.833  0.074 

GHQ – 4  0.500  0.103 

GHQ – 5  0.767  0.082 

Exact  0.510  0.094 

Table I 

 

In Table I, the method “GHQ – 2” means the Gauss-Hermite quadrature with 

two zeroes (values of ix ).  Technically, that means we use first-order expansion in 

Hermite polynomials since the number of zeroes we use is always one greater than the 

order of the polynomial.  Similarly, the other methods have the number of zeroes 

shown.  The “Exact” result at the bottom comes from equations (4a) and (4b) where 

we‟ve assumed three months for the stock movement, volatility of 40% per annum and 

expected appreciation rate of 10% per annum. 

At first glance, the results are not all that impressive.  Looking at probability of 

gain, the exact result is 0.510 (which means there‟s a 51% chance the stock value will 

rise over the three-month period).  The approximations GHQ-2 and GHQ-4 are close, 

but the odd-numbered approximations are not.  As we increase the order beyond what is 

shown in Table I, the agreement will improve (and, we expect, will “converge” to the 

exact result).  Even though this problem is simple, we‟ve deliberately chosen a difficult 

case for Gauss-Hermite quadrature.  The challenge is that the “probability of gain” 

function    xHxf     is discontinuous very close to one of the zeroes (when there are an 

odd number of zeroes).  The discontinuity slows the convergence. 

Agreement in the “Expected Gain” column is much better.  The exact result 

shows that the average gain over the three-month period will be 9.4% (counting any 

losses as “zero gain”).  The pattern is that even-numbered zero approximations are too 

high while odd-numbered zero approximations are too low.  It‟s likely that the next two 

approximations would be much closer to the 9.4% exact result.  In this case, the 

“expected gain” function     1    xexHxf  is continuous everywhere (though not 

differentiable near one of the zeroes of the odd-numbered approximations). 
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Example:  The Cosine and Square Cosine 

The previous example in which we calculated the GHQ approximation to an 

exactly solvable problem is a bit disappointing as we mentioned.  So, mostly for fun, 

let‟s try another solvable problem in which the integrand is smooth (continuously 

differentiable).  Forgetting finance for the moment, let‟s consider the two integrals in 

which we show the exact solutions: 

380388.1          cos  412

 
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 exedx x   
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     cos  122

 







 exedx x 
 

Again, the idea here is that we know the exact values of these two integrals.  Let‟s apply 

GHQ to the integrals as if we didn’t know the exact values and see how close the GHQ 

approximations are: 

Method  Cosine  Cosine Square 

     

GHQ – 2  1.347498  1.024428 

GHQ – 3  1.382040  1.249614 

GHQ – 4  1.380329  1.206943 

GHQ – 5  1.380390  1.212252 

Exact  1.380388  1.212252 

Table II 

 

With only three zeroes (GHQ-3), the approximation is accurate to better than 0.2% for 

the cosine integrand and to roughly 3% for the cosine square integrand.  Further, we see 

rapid convergence.  This behavior is typical of Gauss quadrature for smooth functions. 

Example:  A Falling Bond Price 

We noted earlier that a bond price does not obey a normal or log-normal density 

function.  Yet we can postulate a one-factor yield curve stochastic process that is log-

normal.  We then compute a bond price based on the changing yield curve. 
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Consider a simple fixed-coupon with bullet maturity and coupon C.  Today‟s 

value is par which implies that the discount factor weighted value of today‟s forward 

curve is also C.  We seek to approximate both the expected loss and the expected value 

of this bond value at one year in the future.  Again, a gain on the bond is considered 

“zero loss” for purposes of “expected loss”.  Further, let‟s add that the remaining 

maturity in one year will be T and that the forward T-year rate is 0F . 

While this problem is “simple”, the concepts and algebra soon run deep.  As a 

function of the normally distributed variable X, the bond value in one year is 

   xWADeFC x  Par   Par  00      (5) 

where  xWAD  is the remaining weighted average duration.  The ubiquitous “duration 

approximation” treats this duration as independent of x (the future yield curve).  We will 

retain the yield curve dependence. 

Applying equation (3) to this relationship between bond price and the normal 

variable X, we find the following Gauss-Hermite approximations for the bond expected 

value and expected loss: 

Method  Expected Value  Expected Loss 

     

GHQ – 2  0.99233  0.0263 

GHQ – 3  0.99234  0.0183 

GHQ – 4  0.99234  0.0238 

GHQ – 5  0.99234  0.0200 

GHQ – 18  0.99234  0.0222 

GHQ – 19  0.99234  0.0216 

Table III 

To generate these results, we assigned these values:  coupon C is 5.0%; forward T-year 

rate 0F  is 5.2%; yield curve volatility is 20%; and the remaining time T is 5 years.  

We‟ve also simplified the  xWAD  functional form.  We apply a continuous time 

framework with the discount factor equal to xeF0 .  In “real life”, we solve this problem 

more appropriately with the true payment dates (in lieu of a continuous time 

assumption) and build the necessary discount factors at these payment dates with the 

common bootstrapping technique. 
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The expected loss converges slowly while the expected bond price reaches the 

precision we show with only three zeroes (GHQ-3).  The expected value is less than par 

since we‟ve stipulated that 0F  is greater than the coupon C (which is typical). 

Example:  Structured Transaction with Simulated Cash Flows 

Consider typical RMBS (residential mortgage-backed securities) investments.  

RMBS are a subset of ABS (asset-backed securities) which form yet a further subset of 

“structured finance”.  In RMBS, a pool of assets consists of several thousand mortgage 

loans to homeowners.  Investors in RMBS provide the cash that ultimately goes to the 

homeowners for house purchases.  These investors choose a desired “tranche” within 

the capital structure from the most senior (low risk and low return) to the most junior 

(high risk and high potential return). 

Modeling the performance of these investments is notoriously complex.  The 

primary parameters that impact investment outcome are level of interest rates (i.e., the 

yield curve), default losses of the mortgage loans, and prepayment rates of the mortgage 

loans.  The manner in which any of these three variables affects tranche performance is 

convoluted.  Depending on further critical details, for example, rising interest rates can 

help or hurt the investment tranches.  Analysts must run obscure cash flow models to 

determine expected tranche performance.  These models are invariably “scenario 

models” in that the user specifies the future yield curve, default loss, and prepayment 

assumptions. 

One persistent problem with scenario models, as we discussed early in this 

article, is that the user gets no information on the probability that any particular scenario 

occurs.  Further, we have three critical variables which means the user must specify 

scenarios for three variables simultaneously.  Hence, this complex problem is a 

candidate for GHQ analysis.  We must say immediately, though, that GHQ can only 

alleviate the yield curve contribution.  Plausible stochastic processes for mortgage 

default losses and prepayments are not yet available while the one-factor, log-normal 

process for the yield curve fits GHQ well.  The application of GHQ, then, reduces the 

analysis to that of specifying scenarios for just the two remaining variables (default 

losses and prepayments) and using apparent yield curve stresses to give integrated 

performance data (such as expected return or tranche default probability) for the 

scenarios of default losses and prepayments. 

As an example, consider a senior tranche that pays a floating coupon of 

L + 40 bps pa.  The best outcome is that the investor will receive this full coupon and all 

principal as the tranche pays down.  In this case, the DM (“discount margin”) is 

40 bps pa.  When we choose “base” case stress values for default losses and 

prepayments, our cash flow model finds that the senior tranche loses no principal and 

pays the full coupon under six of the nine GHQ yield curve stress points when we 

choose the ninth-order Hermite polynomial approximation.  The remaining three stress 

points correspond to rising interest rates.  The ix  values for the less-than-full-repayment 

scenarios are approximately 1.5, 2.3, and 3.2.  As equation (3) shows, we multiply these 
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values by 2  to determine the yield curve stress (so that the respective stresses are 2.1, 

3.2, and 4.5 multiplied by the yield curve volatility). 

With the base case stresses for default losses and prepayments, the GHQ 

analysis shows the expected DM to be 38 bps pa.  When we choose an “extreme” 

prepayment stress of half the base case (i.e., prepayments occur at half the expected 

rate), the expected DM falls to negative 14 bps pa.  The point is that GHQ permits us to 

remove yield curve assumptions from our scenario-based cash flow analysis. 

Summary 

There are two distinct “ways to think” in risk management.  The risk analyst can 

apply “stress tests” to a firm‟s risk positions and impose limits on the variability of 

portfolio value under these stresses.  Or the analyst can employ a stochastic 

methodology (e.g., Monte Carlo simulation) to monitor probability of loss (or expected 

loss). 

In many cases, the ancient mathematical integration technique known as Gauss-

Hermite Quadrature (GHQ) blends these two risk management viewpoints.  GHQ 

transforms an integral risk measure of a stochastic distribution into (what appears to be) 

a conventional stress test.  At first recognition, the result is incredible!  This article 

provides the derivation (primarily in the appendices) and gives several examples of the 

application. 
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Appendix I:  Hermite Polynomials 

 

Consider the linear, second-order ordinary differential equation: 

0    2  2   nyyxy     (A-1) 

where n is a non-negative integer and y  and y   represent the first and second 

derivatives, respectively, of y with respect to x.  By searching for series solutions for y 

as a function of x, one finds a solution for each n that is a polynomial of order n.
#
  For 

example, if n = 1, we see by inspection that xy 2    solves equation (A-1).  Of course, 

xy 2    is a polynomial of order 1.  More generally, let‟s call the solution for each non-

negative integer n  xHy n   .  We‟ve already seen that   xxH 2  1  .  We list the first 

few Hermite polynomials below: 

  1  0 xH  

  xxH 2  1   

  2  4  2

2  xxH  

  xxxH 12  8  3

3   

  12  48  16  24

4  xxxH    (A-2) . 

The reader may notice that all the polynomials here would remain solutions of (A-1) 

after multiplication by any constant.  The list we provide is the common convention for 

choosing the constants to satisfy recurrence relations that facilitate analysis.  The 

leading term of  xH n  will always be nn x2 . 

In (A-2) we listed just the first five Hermite polynomials.  Think of the infinite 

sequence of Hermite polynomials as we let n go from zero to infinity.  The functions 

have the critically important properties that they are orthogonal and complete on the 

infinite interval   ,  with the weight function  2exp x .  This orthogonality 

means that 

    nmdxxHxHe nm

x     , 0       
2






   (A-3) . 

                                                           
#
 Equation (1) has two linearly independent solutions.  We are interested only in the solution that we can represent as 

a finite series.  The solution that we ignore remains an infinite series. 
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As a sketch of the proof of orthogonality, we would re-write (1) as 

  0      2   
22



  yenye xx   (A-4) 

and then evaluate the integral 

 







 dxyye mn

x    
2

 

twice by parts.  With the integration-by-parts result and equation (A-4), we prove (A-3). 

The completeness of the  xH n  means that any well-behaved function
*
  xf  

can be expressed as a linear combination of the  xH n .  That is, there exist coefficients 

nC  such that 

   





0

     
n

nn xHCxf   .  (A-5) 

We‟ve now exhausted what we need to know about Hermite polynomials.  But let‟s 

ponder equation (A-5) before we leave.  This equation gives us an exact representation 

of  xf  as an infinite series of Hermite polynomials.  We will use this representation 

later but will find that we can‟t use all the (infinite number of) terms.  Rather, we may 

use only the first five or ten or twenty.  These finite series will be approximations of 

 xf . 

                                                           
*
 In this discussion, “well behaved” means that  xf  is continuous everywhere except at isolated points where it is 

permitted to have jump discontinuities. 
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Appendix II:  Gauss Quadrature 

Forget Hermite polynomials for a few minutes.  The word “quadrature” is a 

synonym for “numerical integration”.  If we need to know the integral from zero to four 

of   2  xxf  , we simply apply the anti-derivative 33x  and evaluate this entity at the 

two endpoints to give 364 .  But if we need to integrate the more difficult function 

   
1

1exp  



x

xf , we must estimate the result numerically.  Please remark the word 

“estimate”.  All numerical integrations are approximations.  The goal of numerical 

integration is to achieve a desired accuracy with a good estimate of this accuracy for the 

least amount of computation. 

Possibly the simplest form of numerical integration is to look at the mid-point of 

the interval ( 2x  in this example where we integrate over the interval  4,0x ) and 

approximate the integral as four (the length of the interval) times  2f  (the function 

evaluated at the mid-point).  (This result is 16 and is not a good approximation for 

364 .)  The next simplest method is the Trapezoidal Rule which evaluates the function 

 xf  at the two endpoints (rather than at just the mid-point).  (This Trapezoidal Rule 

result is 32 and is also a bad approximation.)  With computer programs it is elementary 

to divide any given interval (such as  4,0x ) into many smaller intervals and apply a 

method such as the Trapezoidal Rule on the smaller intervals to get better accuracy. 

We must say, though, that writing a program to apply the Trapezoidal Rule to 

ever smaller intervals is highly inelegant.  It‟s crude and barbaric.  You‟ll have many 

brilliant minds of the past three hundreds years spinning in their graves.  Before 

computers, research and discovery of improved numerical integration methods was 

highly important.  Hence, there are many known techniques superior to the Trapezoidal 

Rule and we will jump to the method that may be the most brilliant. 

Gauss Quadrature begins with the specification of an infinite, complete, 

orthogonal sequence of polynomials in which the domain of the polynomials matches 

the desired integration interval and the orthogonality condition is consistent with the 

desired integrand.  We choose the Hermite polynomials since they suit our financial risk 

applications well in terms of both the integration interval and desired integrand.  (As the 

reader may have guessed, Gauss Quadrature with Hermite polynomials is “Gauss-

Hermite Quadrature”.)  More specifically, we will want to approximate integrals of the 

form 

 




 dxxfe x   
2

 

in which the 
2xe  term denotes either the normal or log-normal probability density 

functions. 
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Let‟s call this integral I and use equations (A-5) and (A-3) of this memorandum: 

 

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 dxxfeI x       
2

 

 
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

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2

CdxeC x    (A-6) . 

This is outstanding!  The end result is simple.  The desired integral I is just the square 

root of  multiplied by the coefficient of the zero-th order Hermite polynomial.  Hence, 

all we need to do is get the expansion of the function  xf  in terms of the Hermite 

polynomials and then use just the zero-th order coefficient 0C .  If we can accomplish 

this task, then equation (A-6) is an exact result.  In practice, though, we will expand 

 xf  into a finite series of Hermite polynomials as an approximation.  The 

approximation improves as we increase the number of terms. 

With the approximation 

   



n

i

ii xHCxf
0

        ,  (A-7) 

we can solve a linear system of equations to get the 0C  of equation (A-6) so that 

   



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 
n

i

ii

x xfwCdxxfeI
0

0                 
2

     (A-8) 

in which the ix  are the 1n  zeroes of  xH n 1  and the iw  are the coefficients we 

construct by solving the linear equations that force equation (A-7) to be exactly correct 

at the points ix .  Fortunately, both the ix  and the iw  are tabulated.  We don‟t need to 

re-derive them.  The sum of the iw  is  .  In arriving at (A-8) we have omitted a long 

discussion of why we choose zeroes of  xH n 1  for the ix  and why the approximation 

in (A-8) is much more accurate than one would imagine. 
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Additional Section Excluded from GARP Article to Explain 

High-Order Accuracy of Gauss-Hermite Quadrature 

Let‟s take an example to make this real.  We want to approximate 

 




 dxxfeI x       
2

 

with the first three Hermite polynomials:       xHxHxH 210  ; ; .  (See equations (A-2).)  

To get the “best fit”, I will choose three points on the abscissa (x-axis) and force the 

approximation 

       xHCxHCxHCxf 221100            (A-9) 

to be exact at these three points (which we‟ll call 210  and , , xxx ).  We will choose these 

three values to be 0, 23 , and 23 .  These may seem like arbitrary choices, but 

we‟ll circle back to this choice in just a minute.  For now, note that applying equation 

(7) to each of the points 210  and , , xxx  gives three linear equations in the three 

unknowns 210  and , , CCC .  It‟s quite easy to solve these equations since the  xH n  have 

even or odd symmetry depending on whether n is even or odd and our three points 

210  and , , xxx  are symmetric about zero.  Further, we only need to get 0C .  Of course, 

this 0C  depends on the function value  xf  at all three points 210  and , , xxx .  With 

minimal algebra, we find 

        23  04  23 
6

               0

2

 




 fffCdxxfeI x 
  

Now let‟s get back to the pressing question of why we choose the 210  and , , xxx  

as we did.  First, we need three points to find the three unknowns 210  and , , CCC .
@

  

Second, it is helpful that these points be symmetric about zero.  Most fascinating is that 

these 210  and , , xxx  are the zeroes of the next Hermite polynomial  xH3 .  Why would 

we do that?  Why does  xH3  matter?  In short, the answer is we get the “right answer” 

for 0C  by doing the work for the equation (A-9) approximation with the first three 

Hermite polynomials      xHxHxH 210  ; ;  while, in reality, extending the 

approximation to  xH3 .  Stated differently, once we find 0C  with the approximation of 

the first three Hermite polynomials, we know immediately that we‟d still get the same 

                                                           
@

 The reader might object that we only care about 0C .  But we still count the other two unknowns for purposes of 

determining how many abscissa values are necessary. 
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0C  if we improve the approximation to four Hermite polynomials.  The accuracy of our 

approximation is better than we expect. 

The most immediate method to prove this property is to consider the linear 

system of equations we solved to get 210  and , , CCC .  When we keep the three abscissa 

points 210  and , , xxx  and then add a third point 3x  in order to compute 3C , the matrix of 

the linear system has three zeroes that tell us immediately that the prior 210  and , , CCC  

values are correct and we have just one remaining equation for 3C  in terms of the 

210  and , , CCC . 

But the story gets even stranger.  We just found that an approximation to order n 

is actually correct to order 1n  (due to our choice of the zeroes of  xH n 1  for the 

abscissa points in the order n approximation).  It‟s even better than this.  We find the 

correct integral (i.e., 0C ) for integrand functions  xf  all the way to order 2n! 

I could not recall the proof of this amazing property nor did I find it in the 

references I consulted.  Yet it forms a key justification for applying Gauss Quadrature 

methods.  So I managed to derive the proof and find it to be both obscure and brilliant.  

That‟s a bad combination!  Brilliant observations are usually simple in their final form.  

There‟s likely a more elegant proof than what I‟ll describe here. 

In determining the weights iw , we forced the equality 

  kjxHw
k

ki

iji 2,,1  , 0     




  (A-10) 

where we assume our approximation is to order 2k.  If this statement is also true for 

continued higher values of j, then the integral approximation will be accurate to these 

higher orders.  When equation (A-10) is satisfied, the value of 0C  is unaffected when 

the true function  xf  has components of these higher order Hermite polynomials. 

But why should equation (A-10) be satisfied by higher values of j?  Some 

references argue that the freedom to choose abscissa values (the ix ) provide this 

flexibility.  But that‟s not a comforting explanation.  Further, it seems wrong on its face.  

After all, we chose the zeroes of  xH k 12   en masse.  This doesn‟t feel like flexibility.  

First, here‟s an easy answer.  Equation (A-10) is trivially satisfied for 12  kj  since 

 xH k 12   is zero at all the ix . 

The next step, then, is to determine why equation (A-10) should work with 

22  kj .  There‟s an answer!  A tremendously valuable recurrence relation for 

Hermite polynomials is: 
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     xnHxxHxH nnn 11 2  2        .   (A-11) 

We see that  xH k 22   will satisfy (A-10) if we set 12  kn  in (A-11), multiply this 

equation by iw  and perform the indicated summation since the first term on the right-

hand side is identically zero and the second term already satisfies (A-11). 

But this argument only works once.  It doesn‟t get us to the next even-order 

Hermite polynomial.  If I didn‟t know the answer (accuracy to twice the 2k), I‟d assume 

there is no further accuracy.  But it exists and there‟s a proof.  The “secret” is that there 

are generalizations of equation (A-10) that we can prove: 

  kjxHxw
k

ki

ijii 2,,2  , 0      




 ; (A-12a) 

  kjxHxw
k

ki

ijii 2,,3  , 0      2 




.  (A-12b) 

These and extrapolated relationships (involving higher powers of ix ) make it possible to 

prove (A-10) for the necessary higher orders. 

Let‟s generalize and conclude.  In equation (A-9) we posited an approximation 

to a function  xf  to order 2 (i.e., to  xH 2 ).  Extending this approximation to order n 

we write 

   



n

i

ii xHCxf
0

         .  (A-13) 

We then derive the integral approximation 
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     (A-14) 

in which the ix  are the 1n  zeroes of  xH n 1  and the iw  are the coefficients we 

construct by solving the linear equations that force equation (A-13) to be exactly correct 

at the points ix .  Fortunately, both the ix  and the iw  are tabulated.  We don‟t need to 

re-derive them.  The sum of the iw  is  . 

 


