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The Hazard Rate Matrix 
Approach to Credit  
Rating Transitions

By J. M. Pimbley 1

ebt securities are financial instruments that obligate 
the issuer of  the debt to make principal and interest 
payments at specified times to the investor. Failure of  

the issuer to make such payments is “default.” One may char-
acterize all outstanding debt instruments as being “in default” 
or “not in default.” 

The great majority of  debt instruments — to which we now 
refer as “debt” or “bonds” — will not default prior to matu-
rity. Let’s consider the designations of  “in default” or “not in 
default” as a primitive rating system for bond performance. 
Every outstanding bond falls into one of  these two categories.

Credit rating agencies (CRAs) are incorporated financial 
firms that analyze bonds and provide opinions on bond de-
fault risk in the form of  “ratings” that extend the “not in de-
fault” category of  the primitive rating system.2 These CRAs 
generally give a symbol D to the “in default” category and 
give symbols such as AAA, AA, A, BBB, BB, B, and CCC to 
seven “not in default”categories that represent increasing risk 
of  future default. The precise symbols for these “letter grades” 
vary from one CRA to another. Further, each CRA has an 
expanded scale that boosts the number of  “not in default” rat-
ings from seven to roughly 20. In this article, we will generally 
use these seven “major” rating levels merely to simplify the 
discussion.

Meaning of  the CRA Credit Ratings
The bond rating that carries the least risk is AAA. The “low-
er” rating levels of  AA down to CCC denote progressively in-
creasing default risk. The four largest CRAs have published 

“default tables” that show either targets or historical assess-
ments of  default probability over time for each rating level.3 
These tables would seem to provide a definition, or at least a 
benchmark, for the meaning of  the CRA ratings. The CRAs, 
however, have generally avoided making the explicit claim that 
their default tables define their ratings.4

The CRAs also publish “rating transition matrices” that 
show the frequency of  rating changes from one level (such as 
AA) to another (such as A) over periods of  one year or longer.5 

These transition matrices are consistent with and complemen-
tary to the default tables since “default” is synonymous with 
rating transition to the default rating D. Thus, for example, 
the default probabilities for each rating for a tenor of  one year 
form the (bottom) row of  the one-year transition matrix for the 
final rating of  D.6

Time-Dependence of  the Credit Rating
Contemplation of  the CRA rating transition matrix (RTM) 
leads us to consider the process for time evolution of  credit 
ratings. Previous work begins with the one-year transition ma-
trix and makes the assumption that rating changes are Mar-
kovian.7 In this context, the description “Markovian” means 
simply that the likelihood of  a rating change depends only on 
a bond’s current rating and the RTM. 

In practice, rating changes are not Markovian because the 
CRAs — inadvertently or otherwise — behave in a manner 
that depresses rating volatility. For example, if  a currently AA-
rated bond deserves a downgrade to BB, CRAs will typically 
downgrade the bond to A or BBB rather than impose the full 
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rating change in one rating action.8 Moody’s Investors Service 
states: “Moody’s ratings management practice, by avoiding re-
versals, necessarily produces positive serial momentum in rat-
ings changes. A downgrade is much more likely to be followed 
by another downgrade than it is an upgrade.”9

Before continuing, let us emphasize this point. Existing treat-
ments of  rating transitions employ a Markov paradigm. This 
treatment is most tractable and most sensible: ratings should 
be Markovian to maintain accuracy of  default risk estimation. 
Yet CRA rating transitions are clearly not Markovian in prac-
tice. Hence, we will not try to fit empirical rating transition 
data with our model results. Rather, we view the relevance of  
this study to be the development of  idealized (Markov) rat-
ing transition behavior to assist banks, portfolio managers and 
other practitioners in the development of  accurate default rat-
ing scales.

Consequently, we develop in this article an alternative Mar-
kovian process for rating changes that we find to be more intui-
tive than existing methods that begin with the one-year RTM. 
The new treatment, which ultimately merges with the conven-
tional method, has the advantage of  both an easier derivation 
and better examination of  the bond rating behavior for large 
times. We find, for example, that a certain matrix eigenvector 
forms a “natural rating distribution” to which all initial rating 
states evolve.

The nature of  this finding — that we identify an eigenvec-
tor with a credit rating distribution — implies that the math-
ematical development and the finance implication are strongly 
linked. Much of  the remaining exposition of  this article is un-
avoidably mathematical. The following sections (up to “Practi-
cal Result – Examples”) constitute this analysis, and the ensu-
ing sections provide the finance interpretation.

Mathematics of  Rating Transitions: Simple Case
To begin, let us consider the “primitive rating system” in which 
a bond is either “in default” or “not in default.” At time t=0, 
we specify that the bond is not in default and that the prob-
ability of  the bond not being in default at time t>0 is S(t). The 
initial condition is S(0)=1. We specify the probability of  the 
bond defaulting (which is identical to the probability of  the 
bond being downgraded to the “in default” rating level) dur-
ing the time period (t,t+dt) as S(t)dt. Since a rating transition 
to the “in default” rating is a rating transition out of  the “not 
in default” rating, we write

Equation (1) shows the familiar hazard rate process that is 
well known for bond defaults and other applications.10 The 
solution of  equation (1) for the survival time S(t) with a time-
dependent hazard rate (t) is

We specify (t)>0 for all t>0 to indicate the presence of  de-
fault risk at all times. While the probability S(t) of  the bond 
being in the “not in default” rating level declines from 1 at 
time t=0 to zero as t goes to infinity, the probability of  the 
bond being in default - 1–S(t)- moves in the opposite manner 
from zero at t=0 to 1 as t goes to infinity. The default state is 
“absorbing” in the sense that a bond remains in default once 
it reaches default.

Mathematics of  Rating Transitions: Full Rating Scale
The purpose of  our explaining the well-known hazard rate 
model of  equations (1) and (2) for the bond default process is to 
show motivation for a similar “hazard rate matrix” approach 
for credit rating transitions. Instead of  beginning with a bond 
that is simply “in default” or “not in default,” we specify that 
the bond has a designated probability of  being in one of  the 
eight rating categories (AAA, AA, A, BBB, BB, B, CCC, or D). 
Let these eight probabilities sum to one and be written as the 
column vector r. This vector has components ri with i=1,...,8 
designating the eight rating levels. If  one wishes to specify, for 
example, that the current bond rating is definitely BBB, then 
one would set r4=1 and all other ri to zero. More generally, 
let us say there are N rating categories with category N being 
“default.”

Analogous to equation (1), the rating probability vector r(t) 
evolves in time as

where Q(t) is the time-dependent hazard rate matrix (HRM) 
for rating transitions. In the limit as ∆t→0, the HRM Q has 
the meaning that I–Q∆t is the rating transition matrix for the 
time period ∆t where I is the identity matrix. More specifically, 
the ij element of  I–Q∆t is the probability that a bond in rating 
level j will transition to rating level i in the time period ∆t. We 
specify a negative sign in equation (3) to maintain consonance 
with equation (1). As a result, the components Qij of  Q satisfy 
the following:
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9 See, for example, Löffler and Posch (2011). 
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The special designation in (4a) for rating category N reflects the condition that a 

bond in default cannot experience a rating transition to leave this default state.  

Equation (4d) imposes the requirement that the sum of probabilities of all rating 

levels must be constant (at the value 1).  Thus, equations (4a-d) show us that   is 

an N x N matrix in which column N is filled with zeroes, all other diagonal 
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(3)
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The special designation in (4a) for rating category N reflects 
the condition that a bond in default cannot experience a rating 
transition to leave this default state. Equation (4d) imposes the 
requirement that the sum of  probabilities of  all rating levels 
must be constant (at the value 1). Thus, equations (4a-d) show 
us that Q is an N x N matrix in which column N is filled with 
zeroes, all other diagonal elements are positive, all other off-
diagonal elements are negative and the sum of  the elements in 
each column is zero.

Just as we can solve the scalar hazard rate equation (1) to get 
the survival time S(t) of  equation (2), the solution to equation 
(3) is

  

for the special case in which Q has no time dependence. In 
equation (5), the argument of  the exponential is an N x N ma-
trix, with “–t” multiplying every component of  Q.11 The initial 
rating probability vector is ro. For a time-dependent HRM Q(t), 
it is not possible to determine a solution similar to equation (5), 
unless the time dependence is of  the form of  a constant matrix 
A multiplied by an arbitrary scalar function g(t). Thus, with 
Q(t)=Ag(t), the time-dependent rating probability vector r(t) is

Unless stated otherwise for the remainder of  this study, we 
take the HRM Q to be constant, so that equation (5) is the 
relevant expression for the rating probability vector. It would 
be worthwhile to employ a time-dependent Q(t) in modeling 
exercises for which one desires a rating volatility that increases 
or decreases with a prescribed g(t).

Standard Rating Transition Matrix
Equation (5) permits us to write the RTM for any future time t 
as exp(–Qt). The most typical period is one year, so the one-year 
RTM would be simply exp(–Q). Many previous studies of  rat-

ing transition dynamics have treated this one-year RTM as the 
analytical starting point and then created a “generator matrix” 
similar to the HRM Q of  this article.12 

The primary difference between these earlier generator ma-
trices and our HRM is our interpretation of  Q as the agent of  
time evolution of  the rating probability vector in equation (3).13 
We consider the HRM to be the guiding concept and relegate 
the RTM to an ancillary role.

Our HRM differs from the generator matrices of  past stud-
ies in less significant terms as well. The HRM has a preceding 
negative algebraic sign for consistency with the scalar default 
hazard rate. To accommodate rating probability column vec-
tors in equations (3), (5) and (6), our hazard rate matrix indices 
are transposed from the convention of  past studies. That is, the 
component Qij carries information on the probability of  rating 
migration from rating level j to rating level i rather than from 
rating level i to rating level j.

Past research projects have applied a hazard rate matrix ap-
proach to problems other than the time evolution of  credit rat-
ings. Takada and Sumita (2011) studied financial default risk 
based on obligor industry and macro-economic considerations. 
Singer and Spilerman (1976) investigated Markov processes 
relevant to sociology topics such as immigration and juvenile 
delinquency recidivism. Keilson and Kester (1974) provided 
mathematical background and properties for hazard rate ma-
trices in Markov processes.

Necessary Properties of  the Hazard Rate Matrix
We list here and discuss briefly a collection of  properties of  the 
HRM Q in addition to those of  equations (4a) – (4d).

Q has a zero eigenvalue
Since column N of  Q has all zero entries, this matrix is singular. 
All singular matrices have at least one zero eigenvalue. One 
determines the corresponding eigenvector, with little effort, to 
be the column vector with all zero entries, save for the Nth ele-
ment, which we set to 1. Writing N and N as this eigenvalue 
and eigenvector, respectively, these statements become

  

All other eigenvalues of  Q are real and positive
For all other eigenvalues i and eigenvectors →i with i=1,...,N-1, 
it would be highly desirable if  the eigenvalues were real 
and positive. While the matrix Q is real, it is not symmet-

(5)

(6)

(7)
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for the special case in which   has no time dependence.  In equation (5), the 

argument of the exponential is an N x N matrix with “  ” multiplying every 

component of  .10  The initial rating probability vector is   ⃗⃗⃗ ⃗.  For a time-dependent 

HRM  ( ), it is not possible to determine a solution similar to equation (5) unless 

the time dependence is of the form of a constant matrix   multiplied by an arbitrary 

scalar function  ( ).  Thus, with  ( )    ( ), the time-dependent rating 

probability vector  ⃗( ) is 

 ⃗( )      [  ∫     ( ) 
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Unless stated otherwise for the remainder of this study, we take the HRM   

to be constant so that equation (5) is the relevant expression for the rating 

probability vector.  It would be worthwhile to employ a time-dependent  ( ) in 

modeling exercises for which one desires a rating volatility that increases or 

decreases with a prescribed  ( ). 

Standard Rating Transition Matrix 

Equation (5) permits us to write the RTM for any future time   as 

   (   ).  The most typical period is one year, so the one-year RTM would be 

simply    (  ).  Many previous studies of rating transition dynamics have treated 

this one-year RTM as the analytical starting point and then created a “generator 

matrix” similar to the HRM   of this article.11  The primary difference between 

these earlier generator matrices and our HRM is our interpretation of    as the 

agent of time evolution of the rating probability vector in equation (3).12  We 

consider the HRM to be the guiding concept and relegate the RTM to an ancillary 

role. 

                                                 
10 One interprets the exponential function of a matrix argument as the MacLaurin series expansion of the 
exponential with scalar product powers of the matrix argument.  
11 See, for example:  Israel, Rosenthal, and Wei (2001); Lando and Skødeberg (2002); and Jarrow, Lando, 
and Turnbull (1997). 
12 Jarrow, Lando, and Turnbull (1997) also wrote a “Kolmogorov equation” similar to equation (3) to relate 
the “generator matrix” to the time evolution of the RTM.  Our work differs from this study in our focus on 
the HRM and the rating probability vector. 
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ric. It is in principle possible for some eigenvalues to be 
complex even with the properties of  equations (4a) – (4d).14  

Therefore, we impose the constraint on the elements Qij of  Q 
that all eigenvalues be real. Our motivation for this require-
ment is the behavior of  solutions of  equation (5), which we 
discuss later.

Considering the sub-matrix of  Q that excludes the Nth row 
and column, Gerschgorin’s Circle Theorem (GCT) and equa-
tions (4b) - (4d) are sufficient to show that all eigenvalues of  
the sub-matrix are greater than zero (i.e., i>0).15 Note that 
these “eigenvalues of  the sub-matrix” are simply the remain-
ing eigenvalues i with i=1,..., N-1 of  Q. Equations (4b) – (4d) 
are sufficient support for the assertion that the sub-matrix is 
strictly diagonally dominant. Since all diagonal elements are 
positive, the radii of  the Gerschgorin circles of  the GCT do 
not permit zero or negative eigenvalues.

For convenience, we number the eigenvalues from largest to 
smallest. Incorporating the possibility that two or more eigen-
values may have the same value, we write

The matrix Q has a set of  N linearly independent eigenvectors
We’ve already shown in equation (7) the eigenvector →N   
corresponding to the eigenvalue N=0. While Q has N–1 ad-
ditional eigenvalues that are real and positive, as assumed or 
proven earlier, it is possible that Q does not have a full set of   
N linearly independent eigenvectors. 

If  the N–1 positive eigenvalues of  equation (8) are distinct, 
then Q would have this complete set of  eigenvectors. But there 
is no assurance of  distinct eigenvalues. As with the earlier con-
cern for complex eigenvalues, we add a constraint on the per-
mitted elements Qij of  Q that there exists a set of  N linearly in-
dependent eigenvectors →i with i=1,..., N. With this condition, 
the matrix Q is diagonalizable.

The elements of  each of  the first N-1 eigenvectors sum to zero
For all eigenvalues and eigenvectors, we can write Q i = i i 
with i=1,..., N. Excluding the last eigenvalue/eigenvector pair, 
we know i0. We define the row vector yT to have rank N 
with all elements equal to 1. Pre-multiplying the HRM Q by 
yT gives another rank N row vector in which all elements are 
zero (because the sum of  each column of  Q is zero). This ob-
servation means that i yT i=0. The pre-multiplication of  i by 
yT simply sums the elements of  i. Since i0, the sum of  the 

elements of  each eigenvector i must be zero. Note that this 
zero-sum condition does not apply to the last eigenvector N, 
since N =0.

The eigenvalues and eigenvectors of  the rating transition matrix are readily 
determined
We observed earlier that the one-year RTM is exp(–Q) and the 
more general RTM for time t is exp(–Qt). Working with the lat-
ter, this RTM is a matrix with the infinite series representation

We’ve written the scalar t to the left of  the terms with powers of  
the HRM Q. The notation Qk simply means that the matrix Q is 
multiplied by itself  k times. Since Q i = i i  implies Qk i=i 

k i, 
we see that i  is also an eigenvector of  exp(–Qt), with

Thus, the eigenvectors of  the RTM exp(–Qt) are simply the ei-
genvectors of  the HRM Q. In terms of  the eigenvalues of  the 
HRM, the RTM eigenvalues are e-it.

The rating probability vector r(t) is a linear combination of  eigenvectors
Since the matrix Q has a set of  N linearly independent eigen-
vectors i with i=1,..., N, we can write the rank N rating prob-
ability vector r(t) as a time-dependent, weighted sum of  the 
eigenvectors:

In equation (11), the coefficients i are time-dependent while 
the eigenvectors i are constant. Applying equation (3),

We use the notation i
o to denote the (time-independent) 

initial value of  i. With equations (11) and (12), the probability 
vector r(t) becomes
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                        .  (8) 
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13 As an example, imagine there are only four rating states (including the default state) so that    .  Let 
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).  Of the four eigenvalues of this matrix, two are real (0 and 

0.097) and two are complex (0.252 + i 0.048 and 0.252 – i 0.048).  Relatively small changes to some off-
diagonal matrix elements produce four real eigenvalues. 
14 See, for example, Weisstein (2012).  In our application of this theorem, we consider the sum of column, 
rather than row, element absolute values for the Gerschgorin radius.  This substitution is permissible since a 
matrix and its transpose have the same eigenvalues. 
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Thus, the eigenvectors of the RTM    (   ) are simply the eigenvectors of the 

HRM  .  In terms of the eigenvalues of the HRM, the RTM eigenvalues are      . 

The rating probability vector  ⃗( ) is a linear combination of eigenvectors 

Since the matrix   has a set of N linearly independent eigenvectors  ⃗  with 

       , we can write the rank N rating probability vector  ⃗( ) as a time-

dependent, weighted sum of the eigenvectors: 

 ⃗( )   ∑    
   ( )  ⃗     .   (11) 

In equation (11), the coefficients    are time-dependent while the eigenvectors  ⃗  
are constant.  Applying equation (3), 

 ⃗       ⃗     ∑   
 

   
  ⃗     ∑  

 

   
   ⃗     ∑  

 

   
    ⃗  

   ∑ (        ) 
     ⃗            ( )                .   (12) 

We use the notation     to denote the (time-independent) initial value of   . 

With equations (11) and (12), the probability vector  ⃗( ) becomes 

 ⃗( )   ∑            ⃗  
       .   (13a) 

The initial rating probability vector  ⃗   ⃗( ) is 

 ⃗    ∑     
     ⃗     .   (13b) 

Since the eigenvectors  ⃗  are known, we use equation (13b) to determine the     

given the choice of  ⃗ . 
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The initial rating probability vector ro = r(0) is

Since the eigenvectors i are known, we use equation (13b) to 
determine the i

o given the choice of  r→o.

The probability character of  the vector r→(t) is preserved
To interpret the vector r→(t) as a “rating probability” vector, all 
its elements must be non-negative and sum to one. Clearly, one 
would choose an initial probability vector r→o that satisfies these 
conditions. From equation (13b), we see requiring the sum of  
the elements of  r→o to be one implies that N

o=1.16 With this as-
signment, equation (13a) then shows that the sum of  elements 
of  r→(t) for all t >0 is also one (since N =0).

To show that all elements of  r→(t) remain non-negative pro-
vided they are non-negative at time t, consider r→(t+∆t). For suf-
ficiently small ∆t, r→(t+∆t)[I–Q∆t]r→(t). Given that Q has the 
properties (4a)-(4d) and that the elements of  r→(t) are non-nega-
tive, the observation that all elements of  the matrix I–Q∆t are 
positive implies that all elements of  r→(t+∆t) are non-negative. 
Applying these time steps ∆t repeatedly shows that all elements 
of  r→(t) remain non-negative as time t increases.

It is worth noting that this property of  persistent non-nega-
tivity for the elements of  r→(t) does not arise from a non-nega-
tivity property of  the elements of  the eigenvectors →i (i=1,..., N) 
of  the HRM Q. Other than the eigenvector →N corresponding 
to the zero eigenvalue, all the →i will have at least one negative 
element (given that the sum of  vector elements is zero and the 
elements are not all zero).

Asymptotic Behavior of  Credit Ratings for Large 
Time
Just as we know that the survival probability S(t) for the simple 
hazard rate model of  equation (2) must approach zero as time 
t goes to infinity, we have a similar expectation for the rating 
probability vector r→(t) as t→ . 

Regardless of  the initial rating state r→o, all bonds eventually 
default. Hence, all probability will accumulate in the default 
state. The probability vector will approach the column vector 
with one as the Nth component and all other elements zero. 
From equation (7), this is also the Nth eigenvector →N. Symboli-
cally, this is depicted as follows:

By inspection of  equation (13a), we can improve the equa-
tion (14) asymptotic expression by retaining the next largest 
term:

The ordering of  eigenvalues of  equation (8) motivates this ex-
pression. The smallest positive eigenvalue is N-1 and we desig-
nate this N-1 as the “penultimate eigenvalue.” We consider N 

(=0) to be the “last eigenvalue” and make the assumption that 
the antepenultimate eigenvalue, N-2, is strictly greater than the 
penultimate eigenvalue. All other terms of  equation (13a) are 
exponentially smaller than the two terms of  equation (15) as 
time t goes to infinity.

A striking feature of  equation (15) is that the “penultimate 
eigenvector” →N-1 provides a fixed distribution of  rating prob-
abilities above the default state (N). That is, imagine that the 
probability of  each rating level above D is specified as being 
proportional to each corresponding element of  →N-1. Then, as 
time increases, the relative probability “amount” of  each rat-
ing above D remains the same even though the absolute prob-
abilities of  each rating are diminishing with the e-N-1t exponen-
tial of  equation (15). 

If  the financial world deliberately added new bonds to re-
place bonds that default, then one could interpret the penulti-
mate eigenvector as providing a steady-state rating distribution 
above D. In reality, there is no replacement mechanism of  this 
type, so we will think of  →N-1 as providing merely a “natural 
rating distribution.” Regardless of  the initial rating state, the 
rating probability vector will evolve over time to the shape of  
this “natural rating distribution.”

Given this meaning of  →N-1, we conclude that each of  the 
first N-1 elements of  this penultimate eigenvector must either 
have the same algebraic sign or be zero. To add clarity, these 
N-1 elements cannot consist of  both positive and negative en-
tries. This statement is not an additional requirement to place 
on the HRM. Rather, the properties we developed earlier are 
sufficient to prove this behavior. 

Since r→(t) maintains its character as a probability vector, then 
it must do so in the asymptotic limit expressed in equation (15). 
If  the first N-1 elements of  →N-1 are non-negative, (non-posi-
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vector with one as the     component and all other elements zero.  From equation 

(7), this is also the     eigenvector  ⃗ .  Stated symbolically, 

 ⃗( )   (
 
 
 
 
 
)     ⃗             .   (14) 

By inspection of equation (13a), we can improve the equation (14) 

asymptotic expression by retaining the next largest term: 

 ⃗( )      ⃗                       ⃗                   .   (15) 

The ordering of eigenvalues of equation (8) motivates this expression.  The 

smallest positive eigenvalue is      and we designate this      as the “penultimate 

eigenvalue”.  We consider    (  ) to be the “last eigenvalue” and make the 

assumption that the antepenultimate eigenvalue,     , is strictly greater than the 

penultimate eigenvalue.  All other terms of equation (13a) are exponentially smaller 

than the two terms of equation (15) as time   goes to infinity. 

A striking feature of equation (15) is that the “penultimate eigenvector” 

 ⃗    provides a fixed distribution of rating probabilities above the default state (N).  

That is, imagine that the probability of each rating level above D is specified as 

being proportional to each corresponding element of  ⃗   .  Then, as time 

increases, the relative probability “amount” of each rating above D remains the 

same even though the absolute probabilities of each rating are diminishing with the 

        exponential of equation (15).  If the financial world deliberately added new 

bonds to replace bonds that default, then one could interpret the penultimate 

eigenvector as providing a steady-state rating distribution above D.  In reality, there 

is no replacement mechanism of this type, so we will think of  ⃗    as providing 

merely a “natural rating distribution”.  Regardless of the initial rating state, the 

rating probability vector will evolve over time to the shape of this “natural rating 

distribution”. 

Given this meaning of  ⃗   , we conclude that each of the first N-1 elements 

of this penultimate eigenvector must have the same algebraic sign or be zero.  To 
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tive), then the constant N-1
o is positive (negative). One can 

also show that the Nth element of  the penultimate eigenvector 
must have the opposite algebraic sign to that of  the first N-1 
elements.

Equations (13a) and (15) also show why complex eigenval-
ues are undesirable. Earlier, we announced a restriction on the 
HRM to ensure that all eigenvalues are real. In the absence 
of  this restriction, complex eigenvalues would be possible and 
they would occur in complex conjugate pairs. 

If  the penultimate eigenvalue N-1 were one of  a complex 
conjugate pair, then we would need to include its conjugate, 
the antepenultimate eigenvalue N-2, in the asymptotic expres-
sion of  equation (15), since both N-1 and N-2 would have the 
same real part. This inclusion is certainly feasible mathemati-
cally, but it produces an asymptotic rating probability vector  
r→(t) that oscillates like a cosine function. Such oscillation is not 
permitted within the context of  rating transition to default, 
so this is the basis for our forbidding complex eigenvalues. 
We should add that our “anti-complexity argument” strictly 
applies only to the smallest non-zero eigenvalues N-1 and N-2, 
but intuition suggests a ban on all complex eigenvalues is most 
reasonable.

Practical Result - Examples
As we related earlier, we do not gather empirical data from the 
CRAs to test this hazard rate matrix model for rating transi-
tions since rating agency downgrades and upgrades are mark-
edly non-Markovian. Rather, we create and study an idealized 
rating transition model. As a first example, consider the HRM 
of  Figure 1 (below) with all values rounded to the nearest 
0.0001.

Figure 1: Example of Hazard Rate Matrix with 
N = 8

With N = 8, the rating categories are {AAA, AA, A, BBB, 
BB, B, CCC, D}. Each off-diagonal entry is related to a prob-
ability of  transition from the column rating state to the row 

rating state.17 Hence, since it is not possible to transition out 
of  the default state D, the last column is filled with zeroes. The 
bottom row consists of  default hazard rates, because the values 
connote transition into the default state D.

To create the example of  Figure 1, we first conjured the di-
agonal entries in a manner that is loosely consistent with values 
of  Moody’s (2011). We imposed the behavior of  the diagonal 
value monotonically increasing from the highest (AAA) cat-
egory to the lowest (CCC) category above default, because the 
CRAs often describe their ratings as being less volatile in the 
higher categories. For off-diagonal entries, we imposed plau-
sible default hazard values in the last row, geometric decreases 
in absolute values moving up and down from the diagonal, and 
the zero-sum condition for each column (equation (4d)).

To compute eigenvalues and eigenvectors of  the Figure 1 
and other matrices, we apply the methods and algorithms of  
Press, Flannery, Teukolsky and Vetterling (1992).18 For this  
first example, we list the eigenvalues and associated eigenvec-
tors in Figure 2 (below) with all values rounded to the nearest 
0.001.

Figure 2: Eigenvalues and Eigenvectors for the 
HRM of Figure 1

Since an eigenvector multiplied by any non-zero constant 
remains an eigenvector of  the same eigenvalue, we are free to 
choose a normalizing condition. In Figure 2 and other repre-
sentations of  eigenvectors, our normalization is that the sum 
of  the absolute values of  the elements is one and that the last 
element of  each eigenvector is negative (with the exception of  
the last eigenvector).

Consistent with equation (8), we’ve ordered the eigenvalues 
in Figure 2 from largest to smallest. The last and smallest ei-
genvalue 8=0. The eigenvector for this last eigenvalue, 

→
8, is 

shown in the last column of  Figure 2 to consist of  all zeroes 
for the first seven elements and 1 for the last element, as we 
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the behavior of the diagonal value monotonically increasing from the highest 

(AAA) category to the lowest (CCC) category above default since the CRAs often 

describe their ratings as being less volatile in the higher categories.  For off-

diagonal entries, we imposed plausible default hazard values in the last row, 

geometric decreases in absolute values moving up and down from the diagonal, and 

the zero-sum condition for each column (equation (4d)). 

                                                 
16 As stated previously, the HRM   has the meaning that       is the rating transition matrix for the time 
period    where   is the identity matrix.  Thus, the ij element of       is the probability that a bond in 
rating level j will transition to rating level i in the time period   .   
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To compute eigenvalues and eigenvectors of the Figure 1 and other 

matrices, we apply the methods and algorithms of Press, Flannery, Teukolsky, and 

Vetterling (1992).17  For this first example, we list the eigenvalues and associated 

eigenvectors in Figure 2 with all values rounded to the nearest 0.001: 

Figure 2:  Eigenvalues and Eigenvectors for the HRM of Figure 1 

  
1 2 3 4 5 6 7 8 

Eigenvalues 
 

0.440  0.384  0.335  0.293  0.238  0.148  0.021  0.000  

          Eigenvector 1 (0.000) (0.000) 0.001  (0.057) 0.175  (0.210) 0.092  0.000  
Components 2 (0.000) (0.001) (0.048) 0.237  (0.169) (0.086) 0.095  0.000  

 
3 (0.001) (0.026) 0.219  (0.185) (0.169) 0.031  0.092  0.000  

 
4 (0.009) 0.184  (0.256) (0.142) (0.025) 0.111  0.080  0.000  

 
5 0.137  (0.326) (0.072) 0.025  0.089  0.139  0.064  0.000  

 
6 (0.341) 0.042  0.105  0.110  0.121  0.123  0.046  0.000  

 
7 0.363  0.274  0.174  0.128  0.114  0.096  0.031  0.000  

 
8 (0.149) (0.147) (0.124) (0.115) (0.138) (0.204) (0.500) 1.000  

 

Since an eigenvector multiplied by any non-zero constant remains an eigenvector 

of the same eigenvalue, we are free to choose a normalizing condition.  In Figure 2 

and other representations of eigenvectors, our normalization is that the sum of the 

absolute values of the elements is one and the last element of each eigenvector is 

negative (with the exception of the last eigenvector). 

Consistent with equation (8), we’ve ordered the eigenvalues in Figure 2 

from largest to smallest.  The last and smallest eigenvalue       .  The 

eigenvector for this last eigenvalue,  ⃗ , is shown in the last column of Figure 2 to 

consist of all zeroes for the first seven elements and 1 for the last element as we 

expect.  The penultimate eigenvalue is            and the penultimate 

eigenvector lies in the column beneath this eigenvalue.  The components of the 

penultimate eigenvector above the D rating represent the “natural rating 

distribution” for the HRM of Figure 1.  These seven components that begin with 

                                                 
17 More specifically, we reduced the HRM to upper Hessenberg form by a series of similarity 
transformations.  We then applied an iterative “QR algorithm” to determine the eigenvalues of the upper 
Hessenberg matrix (which are also the eigenvalues of the original HRM).  With these eigenvalues, we next 
calculated all eigenvectors by inverse iteration. 
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expect. 
The penultimate eigenvalue is 7=0.021 and the penulti-

mate eigenvector lies in the column beneath this eigenvalue. 
The components of  the penultimate eigenvector above the D 
rating represent the “natural rating distribution” for the HRM 
of  Figure 1. These seven components, which begin with 0.092 
and 0.095 and end with 0.031, show this natural distribution 
is primarily (and somewhat uniformly) in the AAA, AA and A 
ratings, and then trails off  at lower ratings.

Based on equations (13a) and (13b), a group of  bonds that 
all have initial AA ratings will have a rating probability vector 
that we write as a linear combination of  the eigenvectors of  
the HRM. Assuming the HRM of  Figure 1, the eigenvalues of  
the top row of  Figure 2 give the rate of  exponential decay of  
each eigenvector component. Since the penultimate eigenval-
ue 7=0.021, the “time constant” for decay of  the penultimate 
eigenvector component (i.e., the “natural rating distribution 
component”) is roughly 48 years (the inverse of  0.021). Thus, 
this component is long-lived. 

The next largest (antepenultimate) eigenvalue is 6=0.148, 
which implies a much shorter time constant of  just about seven 
years. Hence, after roughly seven years, the rating distribution 
of  the remaining, undefaulted bonds that were initially rated 
AA will be approximately proportional to the natural rating 
distribution (components of  the penultimate eigenvector of  
Figure 2).

As a second example, consider the alternative HRM of  Fig-
ure 3 (below), with all values rounded to the nearest 0.0001.

Figure 3: Example of Hazard Rate Matrix with 
N = 8

Whereas the HRM of  Figure 1 is an approximate, ideal-
ized version of  data from Moody’s (2011), Figure 3 is an ideal-
ized and approximate rendering of  data in Standard & Poor’s 
(2008). The diagonal values differ markedly between the two 
HRM examples.19

For this second example, we list the eigenvalues and associ-
ated eigenvectors in Figure 4, with all values rounded to the 
nearest 0.001.

Figure 4: Eigenvalues and Eigenvectors for 
the HRM of Figure 2

Our qualitative observations for the eigenvalues and eigen-
vectors of  Figure 2 (the first example) also hold for this second 
example. The last and penultimate eigenvectors are of  the 
form we expect. Here, the penultimate and antepenultimate 
eigenvalues are smaller than those of  the first example, which 
implies the time constants for decay of  eigenvector compo-
nents to the initial rating probability vector will be longer. The 
natural rating distribution (proportional to penultimate eigen-
vector) is more skewed to AAA in this second example which 
may be due to the small AAA diagonal element (0.04) of  the 
HRM of  Figure 3.

Finally, we present a third example in which the HRM, like 
that of  Figure 1, is motivated by the Moody’s (2011) rating 
transition data. Now we add in the customary sub-categories 
in which all letter ratings from AA down to CCC have three 
distinct rating levels (described by “+” and “-” signs or by nu-
merical modifiers or by “high” and “low” designations). 

Instead of  N=8, this example has N=20 rating levels. Rather 
than showing all 400 elements of  this HRM, we describe it as 
Figure 1, with interpolation along the bottom row (transition 
to default) and along the diagonals with one modification: the 
diagonal elements need to increase by at least 50% relative 
to the Figure 1 diagonal values. This increase in the diagonal 
elements is sensible, because increasing the number of  rating 
levels should necessarily increase the number of  rating transi-
tions. If  we do not increase the diagonal values in this manner, 
then the HRM will have complex pairs of  eigenvalues.

This HRM for 20 rating levels has 20 eigenvalues and 20 
corresponding eigenvectors. The eigenvalues are all real and 
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0.092 and 0.095 and end with 0.031 show this natural distribution is primarily (and 

somewhat uniformly) in the AAA, AA, and A ratings and then trails off at lower 

ratings. 

Based on equations (13a) and (13b), a group of bonds that all have initial 

AA ratings will have a rating probability vector that we write as a linear 

combination of the eigenvectors of the HRM.  Assuming the HRM of Figure 1, the 

eigenvalues of the top row of Figure 2 give the rate of exponential decay of each 

eigenvector component.  Since the penultimate eigenvalue            the “time 

constant” for decay of the penultimate eigenvector component (i.e., the “natural 

rating distribution component”) is roughly 48 years (the inverse of 0.021).  Thus, 

this component is long-lived.  The next largest (antepenultimate) eigenvalue is 

           which implies a much shorter time constant of just about 7 years.  

Hence, after roughly 7 years the rating distribution of the remaining, undefaulted 

bonds that were initially rated AA will be approximately proportional to the natural 

rating distribution (components of the penultimate eigenvector of Figure 2). 

As a second example, consider the alternative HRM of Figure 3 below with 

all values rounded to the nearest 0.0001: 

Figure 3:  Example of Hazard Rate Matrix with N = 8 

0.0400 (0.0316) (0.0212) (0.0115) (0.0087) (0.0048) (0.0040) 0.0000  
(0.0203) 0.0900  (0.0425) (0.0230) (0.0175) (0.0095) (0.0079) 0.0000  
(0.0101) (0.0301) 0.1400  (0.0460) (0.0350) (0.0190) (0.0159) 0.0000  
(0.0051) (0.0150) (0.0404) 0.1600  (0.0699) (0.0381) (0.0317) 0.0000  
(0.0025) (0.0075) (0.0202) (0.0438) 0.2400  (0.0761) (0.0635) 0.0000  
(0.0013) (0.0038) (0.0101) (0.0219) (0.0666) 0.2600  (0.1270) 0.0000  
(0.0006) (0.0019) (0.0051) (0.0109) (0.0333) (0.0725) 0.4000  0.0000  
(0.0001) (0.0002) (0.0005) (0.0030) (0.0090) (0.0400) (0.1500) 0.0000  

 

Whereas the HRM of Figure 1 is an approximate, idealized version of data from 

Moody’s (2011), Figure 3 is an idealized and approximate rendering of data in 
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Standard & Poor’s (2008).  The diagonal values differ markedly between the two 

HRM examples.18 

For this first example, we list the eigenvalues and associated eigenvectors in 

Figure 2 with all values rounded to the nearest 0.001: 

Figure 4:  Eigenvalues and Eigenvectors for the HRM of Figure 2 

  
8 7 6 5 4 3 2 1 

Eigenvalues 
 

0.449  0.314  0.214  0.173  0.113  0.061  0.006  0.000  

          Eigenvectors 1 (0.000) 0.001  (0.001) 0.013  0.134  (0.373) 0.185  0.000  
Components 2 (0.000) 0.004  (0.007) 0.159  (0.412) 0.086  0.110  0.000  

 
3 (0.001) 0.020  0.148  (0.422) 0.019  0.115  0.074  0.000  

 
4 (0.004) 0.103  (0.412) 0.043  0.132  0.130  0.061  0.000  

 
5 (0.033) (0.434) 0.106  0.110  0.095  0.079  0.035  0.000  

 
6 (0.323) 0.285  0.178  0.126  0.085  0.063  0.025  0.000  

 
7 0.500  0.087  0.068  0.050  0.035  0.027  0.011  0.000  

 
8 (0.137) (0.066) (0.080) (0.078) (0.088) (0.127) (0.500) 1.000  

 

Our qualitative observations for the eigenvalues and eigenvectors of Figure 

2 (the first example) also hold for this second example.  The last and penultimate 

eigenvectors are of the form we expect.  Here the penultimate and antepenultimate 

eigenvalues are smaller than those of the first examples which implies the time 

constants for decay of eigenvector components to the initial rating probability 

vector will be longer.  The natural rating distribution (proportional to penultimate 

eigenvector) is more skewed to AAA in this second example which may be due to 

the small AAA diagonal element (0.04) of the HRM of Figure 3. 

Finally, we present a third example in which the HRM, like that of Figure 1, 

is motivated by the Moody’s (2011) rating transition data.  Now we add in the 

customary sub-categories in which all letter ratings from AA down to CCC have 

three distinct rating levels (described by “+” and “-“ signs or by numerical 

                                                 
18 We emphasize again that we are not attempting here to infer hazard rate matrices from rating agency 
data.  This is inappropriate because the amount of data is insufficient to generate the precision we ascribe to 
our matrices and because credit ratings in practice are not Markovian.  Our intent in referencing past data 
from Moody’s Investors Service and Standard & Poor’s is simply to show that the numerical values we use 
are similar to real-world credit rating transition data. 
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distinct, and range from a high of  0.662 for 1 down to 0.013 
and 0.000 (zero) for 19 and 20, respectively. Figure 5 (below) 
shows the largest two eigenvalues with associated eigenvectors 
and the smallest three eigenvalues with eigenvectors (with all 
values rounded to the nearest 0.001).

Figure 5: Five of the Eigenvalues and Eigenvec-
tors for the HRM with N = 20

The two columns furthest to the right of  Figure 5 show that 
the last and penultimate eigenvalues and eigenvectors have the 
properties we derived and described earlier. In particular, the 
penultimate eigenvector gives the shape of  the natural rating 
distribution.

Parting Thoughts
This article considers the well-known credit rating transition 
dynamic and re-formulates the problem in continuous time 
with a hazard rate matrix. As an extension and analogy with 
the hazard rate model for bond default, we create the rating 
probability vector and show how the hazard rate matrix gov-
erns its evolution in time. We explain the mathematical prop-
erties that this matrix must satisfy (both by imposition and by 
proof) and also deduce analytical insights of  the hazard rate 
matrix (HRM).

The eigenvalues and eigenvectors of  this HRM provide the 
best view of  the behavior of  bond credit ratings at large time 

from initial rating. In particular, the penultimate eigenvector 
gives the shape of  the “natural rating distribution.” We believe 
this study is the first to identify and derive this rating distribu-
tion that prevails long after inception.

Our analysis applies only to credit rating migration that is 
Markovian. We do not attempt to fit or explain actual credit 
rating agency data, since rating changes of  the large public rat-
ing agencies are decidedly not Markovian. Rating accuracy, 
however, requires Markovian evolution. As investors, banks or 
asset managers create their own (internal) rating scales and pro-
cedures, it is our hope that the framework, analysis and results 
of  this article will be helpful.

Footnotes
1. The author is Principal of  Maxwell Consulting (http://www.max-
well-consulting.com/) and welcomes followers on Twitter (http://
www.twitter.com/JoePimbley).

2. There exist 10 to 20 CRAs worldwide that have some significant 
form of  governmental, regulatory or market recognition. The largest 
four are Moody’s Investors Service, Standard & Poor’s, Fitch Ratings 
and DBRS.

3. See, for example, Moody’s (2011), Standard & Poor’s (2008), Fitch 
(2012) and DBRS (2012).

4. The published default tables are often associated with the struc-
tured finance ratings of  the CRAs, with no clear statement that these 
tables also apply to the ratings of  non-structured finance debt such as 
sovereigns or banks. Further, Moody’s Investors Service describes its 
ratings in terms of  “expected loss” rather than “default probability,” 
but the conversion between these two risk measures is straightfor-
ward.

5. See, for example, Moody’s (2011), Standard & Poor’s (2008), Fitch 
(2012) and DBRS (2012).

6. Alternatively, the CRA may define its transition matrix such that 
the default probabilities occupy the last column rather than the last 
row.

7. See, for example: Israel, Rosenthal and Wei (2001), and Gupton, 
Finger and Bhatia (2007).

8. See, for example, Lando and Skødeberg (2002), Altman and Kao 
(1992), and Carty and Fons (1993).

9. See the Moody’s Investors Service “Special Comment” of  Mann 
and Metz (2011).

10. See, for example, Löffler and Posch (2011).

11. One interprets the exponential function of  a matrix argument 
as the MacLaurin series expansion of  the exponential with scalar 
product powers of  the matrix argument. 
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Figure 5:  Five of the Eigenvalues and Eigenvectors for the HRM with N = 20 

  
20 19 

 
3 2 1 

Eigenvalues 
 

0.662  0.632  
 

0.080  0.013  0.000  

        Eigenvectors 1 (0.000) 0.000  
 

(0.050) 0.035  0.000  
Components 2 (0.000) 0.000  

 
(0.056) 0.044  0.000  

 
3 (0.000) 0.000  

 
(0.045) 0.045  0.000  

 
4 (0.000) 0.000  

 
(0.032) 0.045  0.000  

 
5 (0.000) 0.000  

 
(0.015) 0.044  0.000  

 
6 (0.000) 0.000  

 
0.003  0.042  0.000  

 
7 (0.000) 0.000  

 
0.020  0.039  0.000  

 
8 (0.000) 0.000  

 
0.034  0.036  0.000  

 
9 (0.000) 0.000  

 
0.045  0.032  0.000  

 
10 (0.000) 0.000  

 
0.052  0.028  0.000  

 
11 (0.000) (0.001) 

 
0.056  0.025  0.000  

 
12 (0.000) 0.007  

 
0.057  0.021  0.000  

 
13 0.002  (0.038) 

 
0.054  0.017  0.000  

 
14 (0.017) 0.116  

 
0.049  0.014  0.000  

 
15 0.075  (0.191) 

 
0.042  0.011  0.000  

 
16 (0.196) 0.122  

 
0.034  0.009  0.000  

 
17 0.310  0.103  

 
0.026  0.006  0.000  

 
18 (0.222) (0.170) 

 
0.017  0.004  0.000  

 
19 0.113  0.152  

 
0.012  0.003  0.000  

 
20 (0.065) (0.101) 

 
(0.303) (0.500) 1.000  

 

The two columns furthest to the right of Figure 5 show that the last and 

penultimate eigenvalues and eigenvectors have the properties we derived and 

described earlier.  In particular, the penultimate eigenvector gives the shape of the 

natural rating distribution. 
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12. See, for example: Israel, Rosenthal and Wei (2001); Lando and 
Skødeberg (2002); and Jarrow, Lando and Turnbull (1997).

13. Jarrow, Lando and Turnbull (1997) also wrote a “Kolmogorov 
equation” similar to equation (3) to relate the “generator matrix” to 
the time evolution of  the RTM. Our work differs from this study in 
our focus on the HRM and the rating probability vector.

14. As an example, imagine there are only four rating states (includ-
ing the default state), so that N=4. Let the HRM be                      .  

Of  the four eigenvalues of  this matrix, two are real (0 and 0.097) and 
two are complex (0.252 + i 0.048 and 0.252 – i 0.048). Relatively 
small changes to some off-diagonal matrix elements produce four 
real eigenvalues.

15. See, for example, Weisstein (2012). In our application of  this 
theorem, we consider the sum of  column (rather than row) element 
absolute values for the Gerschgorin radius. This substitution is per-
missible since a matrix and its transpose have the same eigenvalues.

16. Recall that the sum of  all elements of  each eigenvector vi is zero 
for iN and that the sum of  the elements of  vN is one from equation 
(7).

17. As stated previously, the HRM Q has the meaning that I – Q∆t 
is the rating transition matrix for the time period ∆t,where I is the 
identity matrix. Thus, the ij element of  I – Q∆t is the probability 
that a bond in rating level j will transition to rating level i in the time 
period ∆t. 

18. More specifically, we reduced the HRM to upper Hessenberg 
form by a series of  similarity transformations. We then applied an 
iterative “QR algorithm” to determine the eigenvalues of  the upper 
Hessenberg matrix (which are also the eigenvalues of  the original 
HRM). With these eigenvalues, we next calculated all eigenvectors 
by inverse iteration.

19. We emphasize again that we are not attempting here to infer 
hazard rate matrices from rating agency data. This is inappropriate 
because the amount of  data is insufficient to generate the precision 
we ascribe to our matrices and because credit ratings in practice are 
not Markovian. Our intent in referencing past data from Moody’s 
Investors Service and Standard & Poor’s is simply to show that the 
numerical values we use are similar to real-world credit rating transi-
tion data. 
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