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Introduction
Structured notes are conventional debt instruments with embedded derivative transac-
. tions (generally forwards and options)."! The derivative components of structured notes

impact significantly the nature and magnitude of the market risk of the security.®
Investors should therefore be thoroughly conversant with the derivatives lurking within the
assets they plan to purchase. Failure to acquire this expertise may lead investors to pay
excessive prices for structured notes and to expose themselves to unsuitable market
risks.

One of the most prevalent structured notes is the “multi-step-up callable” for which the
government-sponsored enterprises (GSEs) appear to be the primary issuers. This article
describes this “step-up” callable and its elder cousins: the “plain vanilla” callable and
puttable debt instruments. We find that a thorough understanding of these investments
requires the ability to price the embedded derivative transactions. Armed with an approx-
imate pricing methodology, we design and execute a Monte Carlo simulation to assess
the market risk of these structured notes.

We conclude that the volatility of the market value of these callable and puttable notes
is actually less than that of the underlying conventional notes. While not surprising in
hindsight, a valuable lesson from this exercise is that embedded derivatives can de-
crease, as well as increase, risk. Moody's offers this analysis as a service to the investor

community. Subsequent articles will focus on the risks of other structured notes and
mortgage derivatives.

juswwo) [eroads

[1] See J.M. Pimbley and D.A. Curry, “Structured Notes and the Investor's Risk,* Moody'’s Special Comment, March 1995.

[2] See J.M. Pimbley and D.A. Curry, “Credit and Market Risks of Corridor Notes/Swaps,* Moody'’s Special Comment, September
1994.
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Conventional callable and puttable debt instruments have proliferated for decades. In a callable
note, the issuer has the right to redeem the note at a fixed price during a defined period prior to
maturity. The issuer must declare this defined period and the redemption price upon sale of the
securities.

Though not as common, puttable notes also have a long history. Such securities give the in-
vestor the right to sell the note back to the issuer at a fixed price during a defined period. Clearly,
without any further thought, one may conclude that a puttable note must be more expensive than a
similar instrument without the put provision since this latter feature must have value to the investor.
By the same token, investors pay less for a callable note due to the call provision ceded to the is-
suer.

Let us now consider the multi-step-up callable note. The concept is a straightforward extension
of the conventional callable. The underlying note has a variable, not fixed, coupon that increases
with time. As in most callable notes, the step-up is callable at all coupon dates beyond the first
call. This first call generally coincides with the first scheduled increase in the coupon. The issuer
may prefer the step-up callable note over the conventional callable note since the initial (lowest)
coupon of the former will be less than that of the latter.®

The investor who purchases a callable bond risks having the bond called if interest rates fall suf-
ficiently by a call date so that the underlying bond (without the call provision) would trade above the
call price. The issuer is long the option and the investor is short. The call price is at par or above
and the issuer may call the bond at any coupon date from the earliest call to maturity.

If the call price is at par, say, then the bond call option is equivalent to an option on a swap. As
justification, consider that the issuer may buy the bond for par at a call date. Suppose instead that
the issuer had an option to enter a swap to receive a fixed rate equal to the bond coupon and pay
a LIBOR-plus-a-spread floating rate. If the issuer invokes the swap, the issuer will have converted
the fixed-coupon bond to a floating-rate bond. If the spread in the swap is equal to the issuer's
credit spread (measured with respect to the LIBOR/swap curve), this new floating-rate bond will
trade at par. Hence, the option on the swap allows the issuer to convert the bond to a par-value
instrument.

Since both the call option of the bond and the option on the swap produce the same result (a
par-value investment), the values of the two options must be identical. Hence, we consider the call
option problem to be a swaption problem.

Unfortunately, we've neglected the issue of the credit spread. That is, the issuer might choose
to call the bond due to a narrowing of its credit spread even when the yield curve has not fallen sig-
nificantly. We are not aware of any treatment of the call option that incorporates the credit spread.
We shall ignore it as well. As we demonstrate in Appendix |, the value of the credit spread option is
significantly less than that of the interest rate option when the issuer credit quality is high (eg., Aa
or Aaa). The credit portion becomes increasingly relevant as the issuer debt rating declines.

The bond put option is analogous. The investor's long put option is equivalent to a long position
in an option to enter a pay fixed, receive floating swap.

[3] While possibly valid in some circumstances, this intuitive explanation of why an issuer might prefer the step-up callable note to the conven-
tional callable misses a key facet of the structured note market. Issuers usually “swap out” the derivatives embedded in their structured debt is-
sues. With the callable or step-up callable notes, then, the issuer would likely sell the embedded swaption to a counterparty - often the dealer
for the debt issue - at issuance. Hence, the choice of whether to issue the callable or step-up (or any other possibility) depends on what invers-
tors are willing to buy at the price most favorable to the issuer.
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Like the callable note, the step-up callable note is simply an underlying note (with variable
coupons, though) and a short (to the investor) option on a swap. The fixed-rate legs of this swap
match the variable note coupons. Hence the requisite analysis for pricing and for market risk as-
sessment is equivalent to that for the conventional callable and puttable notes.

Appendix Il describes in detail our analytical approach to the embedded swaptions that comprise
callable, puttable, and step-up callable structured notes. The most prominent conceptual assump-
tions are that the party long the option will invariably exercise when it is economically advanta-
geous to do so and that the “Black framework” is valid. The model accepts a term structure of
volatility and appears robust, consistent, and sensible.

A simple and useful measure of market (interest rate) risk is the “effective duration” of a debt
security. Adding either a call or put provision will generally reduce this duration measure, and
hence the market risk, significantly. While a useful indicator, however, the duration is not a com-
plete risk assessment tool.

To improve this risk measurement, we ask what will be the “likely values” of conventional,
callable, and puttable notes at some point in the future. Clearly we can compile at best “probabili-
ty density functions” for future values of these instruments. We generate these functions with a
Monte Carlo simulation of the term structure of interest rates. This simulation allows the yield
curve to vary stochastically (i.e., probabilistically) with imperfect correlation among different points
on the curve and with an input term structure of volatility. At each point in time the algorithm re-
prices the note and all embedded swaptions. Each Monte Carlo trial generates a different note
price. By running tens of thousands of such trials one maps out a plot (the probability density
function) of the relative frequency of occurrence of each particular potential note value.

A comparison of a conventional and callable note appears below:®

Probability Density Functions for Callable and
Conventional Notes after Two Years
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This figure describes the range of values of the five-year notes three years prior to scheduled

[4] The effective duration is the negative (calculus) derivative of the security price with respect to a parallel shift in the yield curve.
(5] The conventional note pays a semi-annual coupon of 7.28% while the callable note coupon is 8.24%. The issuer may call the latter after

two years or at any coupon date thereafter at par. Both instruments have five-year maturities and have values near par witha A ais-

suer and the LIBOR/swap yield curve of late March 1995.
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maturity (i.e., two years after issuance). The conventional note coupon is set at the value (7.28%)
consistent with an initial value of par. We chose this two-year point as that moment in time imme-
diately following the first call date of the callable note. In fact, a value of par for this callable note
implies that the bond was indeed called at par. The callable note density function has the sharp
peak at par and “zero probability” at note values greater than par while the conventional note has
the gradual density function that is nearly symmetric about par.

Next we consider the puttable note:®

Probability Density Functions for Puttable and
Conventional Notes after Two Years
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The situation of the first of these two graphs is reversed. The puttable note will have a value of
par after two years only if the investor has just put the note at par. Otherwise, the market value of
[6] The conventional note pays a semi-annual coupon of 7.28% while the puttable note coupon is 5.81%. The investor may put the latter after two years or at any

coupon date thereafter at par. Both instruments have five year maturities and have values near par with a Aa issuer and the LIBOR/swap yield curve of late March
1995.
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this note will be above par. .

Clearly the abrupt cut-off feature of the callable and puttable note density functions results from
our choice of the time (two years) coinciding with the first call/put exercise date. The impact of the
call/put provision on the note price is still significant at times prior to the sequence of exercise
dates as demonstrated by the second of the two preceding graphs.

The callable note probability density function is still narrower and more peaked than that for the
conventional note. Further, though difficult to see in this reproduction, the callable note distribution
remains asymmetric. That is, the likely values are not evenly distributed about par but rather are
skewed to sub-par values. Both tendencies are less pronounced when compared with the earlier
distributions after two years since there is significant “time value” remaining in the swaption at one
year after issuance.

The Multi-Step-Up Callable Note

As a specific example of the step-up callable note, imagine a five-year note with semi-annual
coupons with value near par “today”. Consistent with the example in Appendix I, the issuer may
call the note at par in two years or at any coupon date thereafter. Let the scheduled coupon be
8.1% for the first two years, 8.4 % for the third year, 8.8% for the fourth year, and 9.25% for the
fifth year. Thus, the first call date matches the point at which the coupon steps up from 8.1 % to
8.4%. Again, this particular choice of coupon schedule implies an initial debt instrument value of
par (with the market yield curve of March 1995). The issuer’s beginning coupon of 8.1% is less
than the 8.24% fixed coupon of the earlier plain vanilla callable note.

Below we attach plots of the probability density functions for this step-up callable note value after
one and two years:

Probability Density Functions for Step-Up Callable and
Conventional Notes after One Year
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Probability Density Functions for Step-Up Callable and
Conventional Notes after Two Years
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Our earlier observations regarding the probability density function of the “plain vanilla” callable
note apply here as well. The impact of the step-up feature is two-fold. First, the investor’s down-
side is slightly diminished in the step-up callable (which is a reasonable benefit given the investor’s
lower coupon of 8.1%). Second, and quite related, is the observation that the issuer is more likely
to call the step-up note after two years than it is to call the standard callable note. The issuer has

more incentive to avoid paying the next 8.4 % coupon than to avoid the 8.24% coupon of the
standard structure.

Market Risk Implications

The figures in this memorandum paint a clear picture. The variance in future values of callable
and step-up callable notes is significantly less than that of corresponding conventional notes. (This
statement stems from our association of the width of the security price probability density function
with the variance of these prices.) By any sensible measure, then, a “volatility rating” or “market
risk rating” on a step-up callable structured note will not indicate that this instrument has enhanced
market risk.

One may certainly argue that we’'ve considered a very narrow range of examples for such a
sweeping observation. But the result is arguable in much simpler terms. An investor who buys a
fixed-coupon note has interest rate risk. In selling the call provision to the issuer, the investor is
short an instrument (the American put swaption) with the same (direction of) interest rate sensitivity
as the underlying fixed-coupon note. Thus, the presence of the call provision reduces the in-
vestor’s net long position on the yield curve. The same tautology reveals that puttable notes are
less volatile than conventional, fixed-coupon notes as well.

As a parting shot, one often hears callable notes have “re-investment risk”. That is, the issuer
will opt to call a note when interest rates have fallen in order to replace its funding at lower cost.
The issuer thereby compels the investor to accept his/her investment back at a time when interest
rates for re-investment are low. Though technically correct, these statements do not imply, as
many people suppose, that callable notes have “more” risk than conventional notes. Just the op-

posite is true. A callable note has smaller day-to-day fluctuations in market value than does its
conventional counterpart.
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Appendix I: Credit Spread Option Value ‘

We noted earlier that we have not incorporated in our valuation of the bond call and put provi-
sions the component due to varying credit spread of the issuer. That is, a bond value may rise
above a strike level and be called, or fall below a strike level and be put to the issuer, due to fluctu-
ations in the credit spread instead of interest rates. This appendix approximates the credit spread
contribution for the purpose of gauging the inaccuracy in omitting this term in our earlier analysis.

As a crude exercise for estimating the issuer’s credit spread option value in its call provision, we
first take the forward credit spread equal to the initial value (an oversimplification). We then employ
the standard Black put option valuation with an expiration of two years for comparison with the
European swaption example of the memorandum. With a volatility of 40% that loosely reflects our
experience with credit spreads, we find the option value to be 50 bp per 100 bp of original spread.
That is, if the initial spread is 100 bp (typical of a Baa or A issuer), then the option value is 50 bp.
If the initial spread is 20 bp (typical of a Aaa issuer), then the option value is 10 bp and so on. In
this simple approach, the credit spread option embedded in the investor’s put provision is identical
(since the option is at-the-money with our assumption that the present and forward credit spreads
are equal).

In Appendix Il we find typical European swaption values to be 116 bp and 177 bp for the call
and put provisions, respectively. Hence, the 10 bp spread option of a Aaa issuer has only a small,
though not completely negligible, impact on the total swaption value. If the issuer were of specula-
tive grade (spread of 300 bp or more), however, the credit component would equal or exceed that
due to interest rate fluctuations.

The message is clearly that it appears reasonable to omit the credit spread contribution when
the issuer is of high credit quality (e.g., Aa or Aaa). Such an omission becomes less and less ten-
able as credit quality declines. We expect that this statement holds when comparing the American .
credit spread option with the American interest rate swaption.

Appendix II: Pricing the Embedded Swaption

The European Swaption valuation is the first step

We shall refer to the interest rate swaption in question as “American” even though we must qual-
ify this adjective with two comments. First, it might be more precise to use the term “Bermudan” to
denote the feature that the option is exercisable at a fixed set of dates in the future and not at any
arbitrary time. It appears to be accepted market practice to retain “American”.

Second, both “American” and “Bermudan” are somewhat misleading in that the terms fail to
convey the point thatthe option payout changes at each expiration date when the holder chooses
not to exercise the option. That is, if the option holder exercises the swaption “today”, he/she re-
ceives the value of the underlying swap. If the holder declines to exercise, the underlying swap of
the swaption changes.

As a “warm-up exercise”, let us consider the simpler case of a European swaption. Imagine a
five-year note with semi-annual coupons that is callable in two years and at no time thereafter. The
existence of only one call date is unusual. As discussed previously, the issuer is long an option on
a swap to receive fixed and pay floating. With only a single call date, the swaption is European.

We adopt a “Black-type” valuation framework for the European swaption. The underlying swap
extends from year two to year five (with the first payment exchange at two years and six months).
Let F be the forward value at year two of all fixed swap payments. Let X be the forward value at
year two of all floating swap payments. Further, z is the “zero coupon discount factor” for pay-
ments made at the option exercise date (at year two) and t is the time until expiration. The volatility
of the sum of floating payments is o.

[7] Observe that the equivalent swaption for bond ¢ a 1 | optionis a p u t
swaption. That is, the issuer has the option to “sell” the swap (i.e., receive the fixed rate in exchange for the floating rate) to the investor/writer.
Conversely, the equivalent swaption for a bond p u t option is a
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. ‘ The option payout is max { 0 , X — F }. Given the similarity to equity and foreign exchange op-
. tions and the plausibility of a log-normal process for the sum of floating payments, we argue that
the option value is simply the Black expression:™

Swaption value = z BP(X ,F,o, t) (1)

u-

d

A where the “Black put function” Bp is

ve

oy - B, = X®(~d +0+1) - F ®(-d) @

" ' with d = [log(F/X) + o'ty }/o-\/t_

ad. 1 % "

: # and ®(x) = — (due™

sal

s For the corresponding investor’s bond put option with only one exercise date, the swaption payout
ismax { O, F — X }. Here the bond put option value is a similar Black expression:

all, ;

. Swaption value = z BC(X, % a,t) (3)

at

where the “Black call function” By is

- ‘ . B. = FO@) - X®(d-ovr) @

The application of a Black-Scholes framework is somewhat crude in that the forward value of
the sum of fixed-rate payments is not truly a constant value as is the strike of a conventional op-
l tion. This sum of fixed-rate payments is not constant since the yield curve with which the future
payments are discounted fluctuates. A consolation is that this fixed-rate payment term is signifi-
| cantly more stable than the floating-rate payment counterpart.
al- Further, the market legitimizes the Black-Scholes view of swaptions by quoting “swaption
o volatility” to express the value of a particular swaption. In fact, it would make sense for the swap-
tion volatility o to be less than, but nearly equal to, a typical volatility for a forward six-month LIBOR
rate. The validity of this prediction qualitatively vindicates the Black-Scholes framework.

We shall briefly quote numerical results for the unusual call and put provisions of this section.
Without such provisions, a Aa issuer would set the semi-annual coupon at or near 7.28 % to sell
the five-year notes at par. The issuer’s option to call the notes at par after two years (and at no
time thereafter) has a value of 116 bp upon evaluating equations (1) and (2). To sell these callable
notes at par, the issuer would raise the coupon to 7.67 %.

i If instead the investor has the option to put the note at par after two years (and at no time there-
1= : after), equations (3) and (4) place this option value at 177 bp. The investor should expect a re-
k .; duced coupon of 6.64 % to compensate the issuer for the put option. The upward slope of the
' yield curve renders the put option more valuable than the call option.

The next level is the American swaption

/ To some extent the previous section was largely irrelevant because all issuer call and investor

put provisions of which we are aware are of the “American” variety as opposed to “European”.
. . Still, the European framework provides an intuitive and analytical foundation upon which we shall
build the valuation scheme for the American swaption.

(8] Numerical results of this memorandum employ the USD swap and Treasury yield curves of late March 1995.
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When we say that the true call provision is “American”, what we mean is that the issuer has the
option at each call date except the last to call the bond at the pre-designated price or to wait until
the next call date. That is, the issuer’s decision is not simply to call now or never call (as in the
European example of the earlier section).

This observation raises two points. First, the American swaption must be more valuable than its
European counterpart since the latter invokes “all-or-nothing” while the former is “all-or-some-
thing”. Second, for both the current valuation and subsequent Monte Cario simulations, we must
consider what will be the rational exercise criterion. For the European swaption, the issuer will ex-
ercise when the underlying swap has positive value. For the American swaption, the issuer may
choose to accept the underlying swap or an American swaption of reduced maturity. The
American swaption exercise decision, then, rests on the relative values of the swap and diminished
maturity swaption. The issuer will exercise the swaption if and only if the swap has greater value
than the diminished swaption.

We develop “backward recursion” for the American swaption

This section develops a valuation technique for the American swaption. As a broad overview,
we find it easiest to work backwards. That is, imagine we have a five-year note with semi-annual
coupons that the issuer may call at year two or at any coupon date thereafter. We first find the
value of the swaption with exercise date at 4.5 years after issuance (i.e., just six months prior to
maturity). Given this 4.5 year swaption value, we find the value of the swaption exercisable at 4
years. Then we get the swaption value at 3.5 years and so on until we reach the true (first) exercise
date at 2 years.

Why do we proceed in this manner? Though it may not be obvious, it greatly simplifies the
problem. The value of the American swaption at any point in time depends on the values of the
“subordinate” swaptions associated with subsequent call dates. Thus, it is sensible to compute
these “subsequent call date swaptions” first.

The derivation that follows harbors an approximation above and beyond that of the Black-
Scholes construct. One may defend the approximation qualitatively on the grounds that we substi-
tute a mean value term within an integrand and that the subsequent integration reduces the error
due to cancellation of over-compensating and under-compensating regimes. But qualitative assur-
ances are not sufficient. We provide a more detailed error discussion at the point we introduce the
approximation.

Consider the illustrative sketch below which may help explain our notation:

Xn—2 ’ Fn-2 .
7/
Xn-l > “n-l N
7
c [ 1 3 I
AV 1 T 1
"today" i=n-2 i =n-1 i=n
"maturity”

The points in time labelled 4 = n - 27 “/ = n - 17 and “/ = n” denote the final three coupon pay-
ment dates with the last date also coinciding with bond maturity. The symbols X,_, and F,_, stand

[9] We choose to explicity write only the time-dependence as an argument of H"-‘ merely to simplify equations that follow. It is understood that
this swaption value varies with volatility and fixed and floating payments as well.
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for the fixed and (expected) floating payments, respectively, in the final coupon period of the bond.
Likewise, X,_, and F,_, signify the sums of expected fixed and floating payments over the final two
coupon periods.

Our “backward marching” (or “backward recursion”) method begins by valuing the last swaption
with exercise time ati = n - 1. This swaption is effectively European since there are no “trailing”
swaptions. Hence the value of the (put) swaption for a bond call option — which we call 1T | (;"_l)
— replicates the European swaption expression of equation (1):®

Hn—l (tn-l) =2, Bp(Xn—l’Fn—l’O’tn—l) (5)

where t, ; and z, , are, respectively, the time to the call date (at/ = n - 7) and the zero coupon dis-
count factor for payments made at this call date. Similarly, the value of a (call) swaption for a bond

put option, L. (.) replicates equation (3):

rn-l (tn—l ) = Zn—l Bc (Xn—l ’ E:-l ’ G’ ! (6)

n-1

We now move to the penultimate swaption values: I, (t“) and L. (t“) . At exercise (i.e., when
t,.. is zero), the swaption payouts are:

Hn—2 (O) = idx [Xn-l - E.-z ’ Hn—] (A) ]and

r.(0) = max[F,-X,..T,@)]

The A inthese equations is the time period between coupon payments (i.e., one-half year in
our current example). At exercise, the option holder will enter the underlying swap if the first of the
two bracketed terms exceeds the second. If instead the second term exceeds the first, then the
subordinate swaption has more value than the current swap and the holder’s rational decision will
be to defer exercise of the swaption.

The greater challenge lies in deriving this penultimate swaption value prior to expiration. As is
typical of option pricing endeavors, we write the (put) swaption value for the bond call provision as
the present value of the swaption payout weighted with the risk-neutral probability density function
(pdf) of the forward floating rates:

I, (s.) =
&, [d.,fdn,, p(n, o0, 3 Fo ) max [X, -n, T (8)]

By writing
max [Xn-z—nn—l ’ Hn—x(A)] = Hn—l(A) ' nax [Xn-z_nn-z - HA—I(A)’ O]

we find

m,(.,)=1,(.)+
%3 idn,,.lidm-z p(n,.M,.5F,,, F,,) max [Xn_z -n,. - I_(a), 0]
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We now reach the point of our analytical approximation. The H”(A) within the integrand is a func-

tion of the floating rate variable of integration L . Yet it provides a tremendous simpilification, to
say nothing of an elegant result, to make the replacement.

me) - -0

The term on the right-hand side above is just “today’s” value of the swaption to be exercised at
i =n - 1 divided by the zero coupon discount factor. Hence, this right-hand side is the forward
value of the put swaption. The substitution is essentially that of replacing a variable within the inte-
grand by a mean value.

What effect does this substitution have on the eventual accuracy of the swaption value? When
the swaption is far in-the-money, the approximation should be exceedingly accurate since the inte-

grals of the two quantities
m.(s) aa M=)/
n-2

multiplied by p(n,..n..; F., i) are equal. Also, the case in which the swaption is far out-of-
the-money presents no difficulty since the integral contribution to the swaption value, even if inac-
curate, will be much less than the contribution of the subordinate swaption value (i.e., the additive
term). The remaining case is that of the swaption at-the-money. Here the approximation will over-
estimate the integral term by an amount that is difficult to quantify without performing direct com-
parisons with presumably accurate numerical simulations. As an estimate, it appears the error
could approach or exceed ten percent of the true swaption value. A comforting feature is that the
backward recursion technique we develop here will tend to damp error growth. That is, an over-

estimate of the swaption value at one step will depress the value of the swaption with the next ear-
lier exercise date.

With this approximate substitution, we get
Hn—Z (tn—Z) = Hn-l (tn—l) + Bp[Xn—Z il Hn-l (tn-l) ’ Fn-z ’ tn—Z] (7)

where X, = zX, and £ = zF, . Thisis great! The penultimate swaption value is a simple function of
the subordinate swaption value and has the interpretation as just a modified European swaption.
The progression for valuing the swaptions expiring ati =n - 3,/ = n - 4 and so on is trivial. Given
the subordinate swaption at i, the value of the swaption at/ - 7 is just

I, (.,)=1¢() + BP[XH -1L,(¢) . F. t‘._,] (8)

The corresponding expression for the (call) swaption pertaining to the bond put provision is

L. (.)=T.()+ B[R, +T0), F., 1] )

The call/put option algorithms have appealing properties

Equations (5) and (8) describe completely the technique for valuing the American put swaption
while equations (6) and (9) serve the same purpose for the call swaption. The key idea is that one
first values the last piece of the swaption as European and then progressively adds new compo-
nents moving backward until one reaches the true first exercise date.
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This construction has several distinct advantages. First, it is easy to implement. Though it may
seem unwieldy in its recursive form, bear in mind that such pricing formulae are always evaluated
in computer codes and spreadsheet programs. Hence, this American swaption valuation is only
slightly more cumbersome than European swaption valuation.

Second, the form of the recursion (equations (8) and (9)) clearly shows, for example, that put or
call American swaptions with first exercise at two years are more valuable than those with first ex-
ercise at any time greater than two years. This property is fairly obvious without the mathematics,
but it is nonetheless heartening to see it replicated so painlessly by our approximate valuation.
Further, it is clear that if the nearest swap is well out-of-the-money so that swaption exercise at the
upcoming call/put date is highly unlikely, the swaption valuation essentially reduces to that of the
subordinate swaption.

Third, the recursive expressions easily admit the possibility that the bond call/put provision may
require a premium. That is, the call price may be above par or the put price below par. For a call

price premium £, ,» we simply add this amount (discounted to present value) to the floating rate

“payment”. We make a similar adjustment for a put price premium S, Equations (8) and (9) be-
come:

I, () =1()+ BP[X’,_, -0.(),F, + &, t,_,] (8a)

L.(¢.)=0T.1()+ B{[)"ZH +T() +¢ . F,, t,_l] (9a)

Finally, the formulation lends itself well to flexibility in the input specifications. That is, there is
no additional labor required to impose a term structure of (swaption) volatility or to vary the call/put
premium and strike level at each exercise date.

Preliminary Results :

As a preliminary demonstration of the results of this analysis, let us consider again the call and
put provisions of the earlier section on European swaptions. We imagine a Aa issuer that would
set the semi-annual coupon on five-year notes at or near 7.28 % to sell the debt issue at par. The
issuer’s option to call the notes at par after two years (or at any coupon date thereafter) has a value
of 243 bp upon evaluation of the recursion of equation (8). To sell these callable notes at par, the
issuer would raise the coupon to 8.24 %. (The comparable European swaption values were 116
bp and 7.67 %.)

If instead the investor has the option to put the note at par after two years (or at any coupon
date thereafter), the recursion of equation (9) places this option value at 377 bp. The investor
should expect a reduced coupon of 5.81 % to compensate the issuer for the put option. The up-
ward slope of the yield curve again renders the put option more valuable than the call option. (The
comparable European swaption values were 177 bp and 6.64 %.)

These examples produce drastic changes in the coupon level due to the high value of the
call/put provisions. More typically, such bond call and put options would specify premiums that
would reduce the option values and hence produce less dramatic changes in coupons.

The call/put provisions were more than twice as valuable in the “American form” than in the
“European form”. The inequality is sensible from a qualitative standpoint since the party long the
option has much more flexibility (i.e., option value) in the American exercise mode. The two-to-one
ratio in option value will change with any modification in the terms and conditions of the swaption.
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