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ABSTRACT

Many electron devices and chemical reactions depend on the escape rate of particles
confined by potential wells, When the diffusion coefficient of the particle is small, the
carrier continuity or the Smoluchowski equation is used to study the escape rate. This
equation includes diffusion and field-aided drift. In this work solutions to the Smoluchowski
equation are probed to show how the escape rate depends on the potential well shape and well
depth. It is found that the escape rate varies by up to two orders of magnitude when the
potential shape differs for a fixed well depth.

1. INTRODUCTION

Interest continues to focus on the escape rate of particles from a potential well. Kramers
[1] established that the escape rate depends in an exponential fashion on the well depth and
that increases in the well depth lead to decreases in the escape rate. He also showed that the
potential well shape enters to first-order through the well curvature at the well bottom and
at the well top. The well depth, or alternatively the barrier height of the potential well,
affects the operation of electron devices such as charge-coupled devices [2] or quantum-
well devices [3] and the rate of chemical reactions [4-6). When the diffusion coefficient of
the particle trapped in the well is small, the carrier continuity equation, i.e., the
Smoluchowski equation, is used to study the escape rate [7].  This equation includes
diffusion and field-aided drift with the field the negative derivative of the potential well.
Solutions to the Smoluchowski equation are probed here to learn how the escape rate depends
on the potential well shape and well depth.

Several techniques lead to the dominant time dependence of the solutions of the

Smoluchowski equation, that is, the tin e” t/ with t the time [2]. Two of these approaches,
eigenvalue determination and mean first passage time evaluation [4-6], are described in the
next two sections. Numerical solution, closed-form expressions, and random walks are also
utilized.  Linear, rectangular, and polynomial potentials are investigated. All of these
techniques are used in Section 4, where it is shown that t varies by up to two orders of
magnitude when the potential well shape differs for a fixed barrier height. In addition, the
variation is found to grow with the barrier height. Section 5 is a summary of the present
findings.

2. THE SMOLUCHOWSKI EQUATION AND ITS EIGENVALUES

Diffusion with field-aided drift is described by the Smoluchowski equation

an(xt) = 3 [D(x) an(xt) +D(x)qn(xt) dWx)] . (1)
ot ax ax KT X

Here n(x,!) is the particle density as a function of the spatial variable x and the time t, and
D(x) is the diffusion coefficient of the particle. kT/q is the thermal voltage, W(x) is the
potential well, and V = gW/KT is the dimensionless potential well. When chemical reactions
are considered, then x is a reaction or configuration coordinate. The model space is from x =
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0to x = L. The calculations presented below use D = 12.929 cmZ/s and L = 1 pm. _This Dis
appropriate for electrons in moderately doped silicon. The boundary conditions are
reflection or zero flux at x = 0,

D(x) an(xt) + D) qn(xt) aWx) =0 @
ox KT ax

and asinkatx =L,
nLy=0 . (3)

Equation (1) can be solved by numerical methods [8] or by using a one-dimensional version
of a random walk technique for diffusion problems [9]. However, escape problems
generally require only the leading time dependence of the solutions of Eq. (1). Several
approaches yield this dependence and are explored in this work.

The first approach, separation of variables, leads to
n(xt) = I, f(x) e (/) , (4)

with the sum over the eigenvalues t,. These are determined from the differential equation
for f,(x), which is transformed into a standard Sturm-Liouville eigenvalue problem. The
largest t, , 11, dominates Eq. (4), and it is found numerically with the aid of an eigenvalue

determination subroutine [10]. (The second eigenvalue is found to be smlaller py a fa.ctor of
50 or more for the present case.) Figure 1 shows a potential well that is defllned with two
parabolas and was used by Hong and Noolandi in their study of surface desorption [11]. The
parabolas are matched at x = xpg, which for Fig. 1is 0.5 L. The dependence of 74 onthe

barrier height, or equivalently the well depth, is present.ed ir! Fig. 2. The e)fponer]tial
dependence on barrier height predicted by Kramers [1] is evident as the barrier height

increases.
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Fig. 1. Normalized potential vs normalized Fig. 2. Dominant eigenvalue 14 vs barrier
length for the two-parabola potential well. height for the two-parabola potential well.
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3. MEAN FIRST PASSAGE TIME

The dominant time dependence of the solutions of Eq. (1) is also found through the
calculation of the mean first passage time t. This approach is reviewed by Hinggi et al. [6]
and is well-covered in the mathematical and mathematical physics literature [4,5,12-14).
The present derivation follows Weaver [15-16]) and Deutch [17].

The particles escape the potential well at x = L where the flux is proportional to
an(L,t)/ox, (by Eq. (3), n(L,t) = 0). Thus,

t(e) = Jdt t an(L,t)/ax / [dt an(L,t)/x : (5)
0 0

with n(x,t = 0) = §(x -g), the initial condition for the particle distribution. Equation (5)
is evaluated through the use of the Laplace transform technique on Egs. (1), (2), and (3).
The result is
L ¥
we)= JayD Ty e VYY) [ azeV(2) | (6)

£ 0

This double integral can be evaluated numerically or in closed form for simple potential
well shapes [15]. 1(e) is related to a sum over the eigenvalues of Section 2 [18]. 7(€)
exceeds 14 and when the first eigenvalue is dominant, then t(g) _ 1. Selected numerical
results with Eq. (6) are presented in this and the next section.

The mean first passage times 1(e) for the two-parabola potential agree with the
eigenvalue results to better than 3% for barrier heights of a few kT/q. The t(e) is always
greater than the eigenvalue as expected [18], and the eigenvalue T4 quickly approaches 1(e)

as the barrier height increases. Figure 3 shows how (&) depends on the location of the
matching point, xg, of the two parabolas. The potential at xpg is set to half of the barrier

height and the initial particle density is at ¢ = 0.1 L. It is seen that t( &) decreases and,
hence, the escape rate increases with an increase in xg. The spread in the results is about a

factor of 5 to 6, and is approximately equal to the change in the product of the potential well
curvatures at x = 0 and x = L, which is 6.6, This is based on the prefactor of Kramers’
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escape rate [1], which is given in Eq. (17) of Ref. [1] and Eq. (19) of Hong and Noolandi
[11]. The numerical results also show a symmetry, i.e., the t(e) for xg=05L-d equals

that for xg = 0.5 L + d. This also follows from an examination of the product of curvatures
when V(xg) equals half the barrier height.

4. WELL SHAPE EFFECTS

The previous sections described two numerical techniques for the determination of the
leading time dependence for particle escape from a potential well. This section compares the
t for several well shapes. Figure 4 compares a linear, a two-parabola, and a rectangular
potential well. The 1(¢) for the linear potential comes from Eq. (6) and for e = 0 is

= {L2/V D)} [{(eV - 1)V} - 1] ; (7)

Here V is the barrier height in units of kT/q. Random walk results agree with those from
Eq. (7) and with those from the numerical integration of Section 3 for the linear potential.
The eigenvalue approach of Section 2 provides the 1 for the two-parabola case with xg= 0.5

L. The t for the rectangular barrier is obtained from an approximation to the eigenvalue
expression developed [2,19] from Eq. (1),

t={a(1-a)L?/D}eY : (8)

with xg the start of the rectangular barrier, a = xg/L, and V the barrier height in units of

kT/q.

The 1 for the potentials of Fig. 4 are compared in Fig. 5. The spread in © quickly
approaches a factor of ten for barrier heights of about 6 kT/q. The spread continues to
increase with increases in the barrier height and approaches a factor of 100. The results
for the rectangular potential deviate significantly from the other two shapes, although the
two-parabola results are a factor of 5 or so above the linear potential results. The
rectangular potential includes a field-free drift region from x = xg = 0.5 L to the sink at x

= L. This region increases z significantly, as is made clear in Fig. 6. Here tis plotted for a
field-free drift region of 0.1, 0.3, and 0.5 pum with the last case from Fig. 5. The value of ©
decreases with the decrease in the extent of the field-free drift region and approaches the
results for the two-parabola case. - Thus, attention must be paid to the part of the potential
well between the maximum in the potential and the location of the sink.
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Fig. 5. T vs barrier height for the
potential wells of Fig. 4.
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potential with a 0.5 um well. The length
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This finding is emphasized by the final set of results. These are for the two-parabola
potential well with a third parabola matched at x = 1.0 um. The sink is now where the added
parabolic potential goes to zero, so that the model space is extended. The increases in 1 are
shown in Figs. 7 and 8, where the added parabola is convex and concave, respectively. It is
noteworthy that the increase is less for the same added length when the added section is
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Fig. 7. T vs barrier height for the two- Fig. 8. = vs barrier height for the two-
parabola plus convex region of varying length  parabola plus concave region of varying length
in um. The insert is the potential well shape.  in pm. The insert is the potential well shape.

5. SUMMARY

This work has presented several techniques for determining the escape rate of a particle
from a potential well, when the particle motion is described by the Smoluchowski equation.
The results may be scaled for changes in the length of the model space and in the value of the
diffusion coefficient. The numerical results show that the barrier height dominates the
value of the escape rate, but that the shape of the potential well also has a strong effect on
the escape rate. The t values are spread by a factor of 5 to almost a factor of 100 when the
potential well shape is varied for a fixed barrier height. In addition, 1 is affected by the
shape of the potential well before the sink location, but past the potential maximum. The
effects of increases in 1 are amplified in the escape rate, because of the exponential time
dependence of the particle density on 1. These surprising findings mean that increased
attention must be paid to the potential well shape in escape problems.
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