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I.  Introduction 

The advent of credit derivatives will change irreversibly the banking 

industry.  Credit derivatives permit banks to manage and mitigate credit risk in 

their loan portfolios with no detriment to their borrower (client) relationships.  

The market for credit derivatives is growing and will continue to grow briskly 

for the next decade until all major banks incorporate fully this new credit risk 

management capability. 

Somewhat surprisingly, there is still confusion within the financial 

industry regarding the valuation of all credit derivative instruments.  In 

particular, we focus on the credit default swap which is the most prevalent and 

basic credit derivative.  Roughly speaking, one widely accepted technique to 

determine the market credit default swap premium is to set this premium to the 

spread between the yield of a risky bond of the reference entity and the risk-free 

rate of the same maturity. 

Proponents of this “spread to Treasuries” thought process for credit 

default swap pricing employ a risk neutrality argument that we describe within 

this article.  An investor who purchases a Treasury security (USD currency) has 

“zero credit risk”.  If this investor purchases instead a corporate bond, the extra 

yield (i.e., the “yield spread” or “credit spread”) is the additional compensation 

the investor earns for bearing the credit risk of the corporate borrower.  Hence, it 

seems both sensible and intuitive that the default swap premium to transfer this 

same credit risk should be approximately equal to this yield spread to the 

Treasury curve. 

The result is clearly wrong, though, in that it differs markedly from 

premium levels in the existing credit default swap market.  There is also a 

simple hedge argument that demonstrates why the credit default swap premium 
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should coincide more or less with the bond yield spread to the LIBOR curve, as 

one indeed observes, rather than with the spread to the Treasury curve.  Most of 

the models in the finance literature are of the “spread to Treasury” variety and, 

hence, show no agreement with the market.  A plurality of practitioners, on the 

other hand, use some form of “spread to LIBOR” model due, if nothing else, to 

the superior replication of market levels. 

It is both important and instructive to dig deeper to understand why two 

competing modeling approaches give such different results for credit derivative 

valuation.  We find that the manner in which many analysts apply the concept of 

“risk neutrality” to any derivative contract is mistaken.  This discussion 

identifies two observations and one opinion.  First, the risk-free rate is irrelevant 

to derivative pricing (excluding derivatives in which the underlying market 

instrument is itself a risk-free security or yield).  It is LIBOR - which represents 

a dealer funding cost - that is the proper interest rate for derivative pricing. 

Second, what the industry calls “risk neutrality” exists only if a dealer 

can effectively hedge the derivative product in question.  If a hedge does not 

exist, risk neutrality is absent.  Finally, we believe analysts should not consider 

risk neutrality to be a fundamental principle of finance.  Rather, it is more like a 

very useful trick for which “risk equality” would be a better name.  There is no 

“world”, fictitious or otherwise, in which investors demand no compensation for 

risk.  There is only the “trick” that the expected derivative instrument return will 

equal the dealer funding cost when one forces the expected return of the 

underlying market variable to be equal to this same funding cost.  To some 

extent, the distinction is semantic.  Our goal in raising this point is to discourage 

analysts from speculating on the behavior of investors in a risk-neutral world 

rather than simply constructing the relevant hedge. 

These observations and opinion may be immediately evident to some 

readers and create no controversy.  But with the example of credit derivative 

valuation, many finance experts fail to recognize the primacy of LIBOR* over 

the risk-free rate and do not incorporate the dealer’s hedge in their pricing 

models. 

Black and Scholes created the option pricing model that is the foundation 

of this field.  Cox and Ross first enunciated the concept of risk neutrality.  

Harrison and Pliska introduced advanced mathematical techniques to describe 

and deploy risk neutrality more rigorously.  We discuss all of these historic 

research efforts in sections II, III, and IV, respectively.  These sections support 

our contentions that the risk-free rate is irrelevant and that one must show 

existence of the cash market hedge in order to price a derivative instrument. 

                                                           
* As this article will make clear, we ascribe great importance to the dealer funding cost.  Since the senior, 

unsecured funding cost for many dealers is close to LIBOR of the appropriate tenor, we often use “LIBOR” 

as a shorter name for “dealer funding cost of the hedged portfolio”. 
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Section V argues our opinion that the industry has accorded too much 

meaning to risk neutrality.  The useful concept is more akin to a trick with the 

name of “risk equality” since one may solve for derivative valuation with the 

fiction that the derivative and the cash security have expected return equal to the 

dealer’s funding cost. 

Section VI gives several examples of derivative pricing and the utility of 

the conventional risk neutrality.  The credit default swap is the last case.  We 

define this instrument and show in a simplified way how many analysts apply 

risk neutrality to its valuation.  Section VII summarizes this article. 

II.  Black-Scholes and the Hedged Portfolio 

We consider the original article of Fischer Black and Myron Scholes1 to 

be one of the best theoretical research efforts we’ve ever studied.  The central 

concept is that one must consider the dealer’s hedge for a derivative transaction, 

in this case an equity option, in order to determine “rational value” for the 

derivative.  The hedge is integral to the derivation of the value of the derivative 

trade. 

We give here a brief review of the derivation of the Black-Scholes partial 

differential equation for pricing equity options.  We then discuss the inference of 

“risk neutrality” from this analysis and argue that the significance of this 

principle is limited.  Finally, we note that the “risk-free” interest rate is not the 

relevant interest rate for the Black-Scholes analysis. 

Derivation of the Black-Scholes Partial Differential Equation 

Our problem is to find the value  txV ,  of a call option on one share of 

an equity with value x at time t.  The equity pays no dividends.  The option 

expires at time T with tT   and we know the expiration value of the option is 

   SxTxV  ,0max  ,  where S is the option strike price.  A natural approach to 

a solution for  txV ,  is to determine somehow the probability density function 

for the equity value at time T, compute the option expected value from the pay-

off function  Sx ,0max , and then discount this value to time t.  This approach 

failed prior to Black-Scholes.  The hardest steps are the discovery of the 

expected equity growth rate and the proper (risky) discount factor.  Nobody 

knew then, or knows now, how to discount risky cashflows or specify a risky 

asset’s expected growth rate. 

Instead, the Black-Scholes approach requires the dealer to hedge its 

position in the equity option and then focuses on what happens to the value of 

this hedged position over a short time increment t .*  I generally think of this 

                                                           
* For this discussion, we consider the position of a dealer that has sold the equity call option to an investor. 
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t  as being one business day to help myself make a picture for the analysis.  

The dealer must purchase N shares of the equity to hedge its (short) call option 

obligation to the investor (option buyer).  Since  txV ,  is the value of the option 

to buy one share of equity, N is a fractional value less than one. 

The value of the dealer’s portfolio of the long stock position and short 

option  txP ,  is 

   txVxNtxP ,       ,      (II-1) 

where  txV ,  remains unknown.  Consider the change in portfolio value 

P after the time increment t .  This value changes both due to change in time 

t  and to change in the equity value x .  We find (approximately) 

 2

2

1
          xVxVtVxNP xxxt      (II-2)         . 

Since the dealer chooses N to best hedge his/her position, it is sensible (and 

mathematically highly convenient) to choose  txVN x ,   .  Further, to the order 

of t , the expected value of  2
x  is tx 22  where  is the volatility of the 

equity and we’ve made the standard assumption that the equity price follows a 

log-normal stochastic process.  With these substitutions, we write the change in 

dealer position value as 

tV
x

VP xxt 







  

2
       

22
    (II-3)         . 

Next comes a critical observation to which we shall return later.  By 

construction, the dealer’s position is riskless over this period t .  We don’t yet 

know  txV ,  or the partial derivatives of equation (II-3), but the Black-Scholes 

analysis claims that the portfolio value should grow at the risk-free rate since the 

position itself has no risk.  If this risk-free rate is r, then, this growth rule 

suggests that trPP  .  Plugging this value for P  into equation (II-3), 

invoking VxVP x   , canceling the factor t , and rearranging terms, we get 

0        
2

  
22

 rVrxVV
x

V xxxt


    (II-4)         . 

Equation (II-4) is the celebrated Black-Scholes equation.  Solving this 

equation with the expiration condition    SxTxV  ,0max  ,  gives the Black-

Scholes expression for the call option value which we decline to show here.  

Equation (II-4) applies to all equity derivative trades that a dealer can hedge with 

a position in the underlying stock.  For example, consider the equity forward 
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which we will discuss in a later section.  When the investor buys the equity for 

forward settlement at time T at the forward price F, the expiration condition is 

  FxTxV   , .  The solution of (II-4) subject to this auxiliary condition is 

   tTrFextxV        ,     (II-5)         . 

Black also derived the value of a forward contract in terms of the relevant 

futures price in this manner.2 

The Black-Scholes Equation Implies Risk Neutrality ? 

Equation (II-4), the Black-Scholes equation, has the risk-free interest rate 

r as a parameter but excludes the underlying stock’s expected drift rate .  Even 

without solving (II-4), then, we know that the equity derivative value will be 

independent of .  Indeed, the value of the equity forward in (II-5) is not 

dependent on .  One must ask why there is no -dependence and what this lack 

of -dependence means.  One would intuitively expect the value of an equity 

option or forward to depend on the equity’s expected rate of appreciation (which 

will always exceed the risk-free rate). 

This equity appreciation rate  is present in the mathematical formulation 

in the postulated stochastic behavior of the equity price: 

txtxx                  (II-6)         . 

In equation (II-2), x  appears as the multiplicand of  xVN  .  To hedge the 

dealer’s position, though, we set xVN   and thereby eliminated  and all other 

elements of x .  The only other appearance of x  in (II-2) is in the term 

containing  2
x .  When we square x , though, we retain only the leading term 

proportional to t .  The terms in  2
x  that depend on  disappear from the 

mathematical model faster than  tO   as 0t . 

The most captivating reason for the absence of  from the equity 

derivative pricing equation (II-4) is the first:  the dealer’s ability to hedge his/her 

position makes the true equity appreciation rate  irrelevant.  Let’s say that 

again.  When the dealer can hedge his/her position, the value of the equity 

derivative trade is completely independent of the true equity appreciation rate .  

Conversely, if the dealer cannot hedge the position (due to an inability to buy or 

sell the underlying equity), then the mathematical model that gives us equation 

(II-4) is wrong.  One should then expect that the equity derivative value will 

depend on the equity appreciation rate . 

It is the lack of dependence of derivative value on appreciation rate  that 

the market declares to be “risk neutrality”.  Since the correct derivative valuation 
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(when the dealer can hedge the position) does not recognize that the equity 

appreciation rate  is greater than the risk-free rate r, the term “risk neutrality” 

appears at this point quite understandable. 

The Black-Scholes Interest Rate is Not the Risk-Free Rate 

Let’s return to equation (II-1) and the surrounding discussion.  An 

investor purchases an equity call option from a dealer.  The dealer purchases N 

shares of the underlying equity to hedge its position.  The value of the dealer’s 

portfolio is (reprising equation (II-1)) 

   txVxNtxP ,       ,      (II-1) 

where  txV ,  is the value of the equity option.  The dealer must borrow to 

purchase the N shares of equity (at a price of x per share).  Since the investor 

paid  txV ,  for the option, the dealer has a net borrowing requirement of 

 txVxN ,     - which is precisely the portfolio value. 

The interest rate the dealer must pay to borrow in the market is r̂ .  We 

call this value the dealer’s “funding cost” or “borrowing cost”.*  The funding 

cost r̂  is greater than the risk-free rate r.  Since the dealer must borrow at r̂ , it 

will also expect and demand that the value of the hedged portfolio (II-1) will 

appreciate at the rate r̂  (or greater).  We express this portfolio value 

appreciation as tPrP  ˆ  rather than the trPP   prescription we quoted 

following equation (II-3). 

After this substitution of tPrP  ˆ  for trPP  , r̂  becomes the 

interest rate in all the subsequent mathematics.  The risk-free rate r never 

reappears.  If one understands and accepts that the dealer must earn its funding 

rate r̂  rather than the risk-free rate r on its hedged portfolio, then the funding 

rate is the proper interest rate for Black-Scholes analysis.  Throw out the risk-

free rate.  The risk-free rate is irrelevant. 

This irrelevance of the risk-free rate r works in the opposite direction as 

well.  When the investor sells the equity call option to the dealer, the dealer will 

hedge its position by selling short the underlying equity.  To borrow the equity 

for the short sale, the dealer must invest cash with the equity lender.  This equity 

lender will pay the dealer the lender’s (equity collateral-secured) borrowing cost 

r̂ .  Again, the relevant interest rate is a dealer borrowing rate rather than the 

risk-free rate r. 

The Dealer Borrowing Cost r̂  is LIBOR 

                                                           
* In principle, the dealer may post the N equity shares as collateral for the loan in an attempt to lower its 

borrowing cost. 
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The inter-bank lending rate is LIBOR (London Inter-bank Offer Rate).  

While LIBOR represents market assessment of unsecured credit risk for the 

average financial institution, market participants generally use LIBOR as “the 

borrowing rate” for dealers without distinguishing secured versus unsecured.  

(An important exception is repurchase agreements with US Treasury collateral.  

The “Treasury repo” rate is essentially the risk-free rate by virtue of the 

collateral quality.)  Due primarily to various regulatory treatments, the posting of 

equity or corporate debt collateral often does not significantly reduce a dealer’s 

borrowing cost.  Hence, we are in the habit of equating “dealer borrowing cost 

r̂ ” and “LIBOR”. 

But Isn’t the Portfolio Risk-Free ? 

We argued that the risk-free rate is irrelevant since the dealer must fund 

the hedged portfolio (in the case in which the investor buys an equity call option 

from the dealer).  Since the dealer must fund at the dealer borrowing cost r̂ , the 

value of the risk-free portfolio must grow at this rate as well.  Otherwise the 

dealer would suffer a certain loss. 

Yet there’s something missing here.  By both construction and 

assumption, the dealer’s portfolio of the call option obligation and the N shares 

of equity is risk-free over the time period t .  If the portfolio is risk-free, why 

should it not appreciate at the risk-free rate? 

In the currency of the US dollar, US Treasury securities appreciate at the 

risk-free rate.  Dealers will buy Treasuries even though they appreciate at the 

risk-free rate rather than at the dealer’s borrowing cost r̂ .  The dealers can fund 

Treasury purchases with Treasury repos (in which the dealer pledges its new 

Treasury securities to the lender) to reduce the dealer borrowing cost to the risk-

free rate.  It is not possible, though, for the equity option dealer to pledge its 

hedged portfolio in the same manner.  Thus, if the dealer must borrow at r̂ , it 

will demand that all investments appreciate at a rate greater than or equal to r̂ . 

A reasonable question would then be whether the dealer could fund the 

purchase of the risk-free portfolio from its equity rather than its debt.  The 

creation of the hedged portfolio would then be unleveraged in that the dealer 

would not borrow any funds so that there is no “dealer borrowing cost” r̂  to 

compete with the risk-free rate r.  But this is not how the financial industry 

works.  Equity investors of the dealer take significant risk and expect a 

commensurate return.  The “cost of capital” is the rate that equity investors wish 

to earn.  This cost of capital far exceeds both the risk-free rate and the borrowing 

cost r̂ .  In fact, dealers try to use debt as much as possible rather than equity 

since the former is less expensive.  Typically, a dealer borrows at r̂  to fund all 

trades and then allocates capital (with the associated cost of capital) in an 

amount appropriate to the risk of the trade to the dealer.  Since we assume the 



J. M. Pimbley, “The Lesser Meaning of Risk Neutrality,” Maxwell Consulting Archives, 2002. 

 

8 

dealer has zero risk in the equity option hedge, the dealer would assign no equity 

capital to the hedge.  The cost for a zero-risk transaction, then, is r̂ . 

III.  Cox-Ross and the Discovery of Risk Neutrality 

Cox and Ross contributed a landmark scholarly article in the dawn of the 

Black-Scholes era.3  Their study described stochastic processes intuitively in 

terms of jumps rather than diffusion alone.  They formulated from first 

principles the Cox-Ross “square root process”.  Even more important, Cox and 

Ross elaborated on both the Black-Scholes concept of the hedged portfolio and 

the nature of the risk-free rate (which they denoted as the “riskless” rate).  

Finally, Cox and Ross discovered risk neutrality.  This research effort was and 

remains highly impressive.  This section explores the latter two achievements. 

Cox and Ross echoed Black and Scholes in stating that equity option 

valuation requires both the specification of a stochastic process for the 

underlying equity and the construction of a hedged portfolio.  Analysis of the 

hedged portfolio entails the existence of a risk-free rate “which we will take to 

be a constant rate at which individuals can borrow and lend freely”.  This 

stipulation is critically important!  The “riskless” rate of Cox and Ross is, in fact, 

a borrowing and lending rate for individual investors.  In the preceding section, 

we argued that the appropriate interest rate for derivative product analysis is the 

borrowing and lending rate for dealers  which we assert is semantically 

equivalent to individuals.  The Cox-Ross research is never more specific about 

the “riskless” rate.  It never specifies the true risk-free rate (of US Treasury 

securities for the US dollar currency) as the relevant “riskless” rate.  Our prior 

conclusion, then, that the dealer funding cost, rather than a true risk-free rate, is 

the proper interest rate is fully consistent with Cox-Ross. 

Let’s move next to the discovery of risk neutrality.  Cox and Ross 

observed from equation (II-4), as did Black and Scholes, that the true equity 

appreciation rate  is irrelevant (due to the hedge construction).  In a practical 

sense, this irrelevance of  is quite helpful.  The log-normal stochastic process 

for the equity requires both this appreciation rate  and the equity volatility .  

Since the value of  cannot affect the derivative value, we must only determine 

the volatility .  We can then leave this rate  as undecided or, if we desire, 

choose any convenient value for . 

Next comes the revelation.  Consider equation (II-1) for the hedged 

portfolio value for the dealer that has sold an equity option (which we copy here 

and re-number): 

   txVxNtxP ,       ,      (III-1)    . 
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The hedge construction discussion of the last section showed that this portfolio 

value  txP ,  must grow in time at the rate of the dealer’s funding cost r̂ .  The 

two terms on the right-hand side of (III-1) are stochastic, but the difference in 

these two terms is not stochastic.  When the expected growth rate of N x is the 

general value , then the expected growth rate of  txV ,  is not constant in time 

in that it varies with changing values of N x and  txV , . 

But there is one very special case.  If we choose  to be the dealer 

funding cost r̂ , then the expected growth rate of  txV ,  is also r̂  for all time 

regardless of N x and  txV ,  as long as the dealer maintains the hedged 

portfolio.  That is, since  txP ,  appreciates at the rate r̂  (by hedge construction) 

and the expected value of N x appreciates at the rate r̂  (after setting r̂   ), then 

equation (III-1) implies that the expected value of  txV ,  must appreciate at the 

rate r̂ .  This observation is the core of Cox-Ross risk neutrality.  Since it doesn’t 

matter what assumption one makes for , make the convenient choice that 

r̂   .  This specific choice gives the very simple expected growth rate of r̂  for 

 txV , . 

One may exploit this property of equation (III-1) to derive the equity 

option value without formulating and solving the partial differential equation (II-

4).  The value of the (call) option at expiration time T is  0,max Sx   where S is 

the option strike price and x is the equity value prevailing at time T.  Since we do 

not know at time Tt     what x will be at time T, we must think in terms of the 

probability density function  xf .  At time t, then 

Expected value of option at expiration     



0

 0,max   xfSxdx   .    (III-2) 

The function  xf  incorporates the assignment of r̂   .  Since the expected 

value of  txV ,  appreciates at the rate r̂ , the relation between the option value 

and the expected value at expiration in (III-2) is 

       


 
0

ˆ
 0,max      , xfSxdxetxV tTr   or, more directly, 

       


 
0

ˆ
 0,max      , xfSxdxetxV tTr    .    (III-3) 

Equation (III-3) is the complete solution to this equity option valuation when we 

choose a specific probability density function  xf  - such as the log-normal 

density function - with the constraint that r̂   . 



J. M. Pimbley, “The Lesser Meaning of Risk Neutrality,” Maxwell Consulting Archives, 2002. 

 

10 

IV.  Harrison-Pliska and the Advent of Mathematical Finance 

Harrison and Pliska re-formulated the equity option problem and the 

Black-Scholes solution to show that risk neutrality implies a certain martingale 

representation property.4  Many, many subsequent finance research efforts have 

employed probability calculations “in the risk-neutral measure” to create 

derivative pricing results.  That is, Harrison-Pliska conferred a far more esoteric 

and mathematical meaning to risk neutrality than that of a simple consequence 

of a hedged position. 

This research effort did not argue that a dealer’s hedge is irrelevant.  

Rather, it changed the language of the discussion.  The “hedged position” 

became a “self-financing trading strategy”.  The assumption of “market 

completeness” replaced the Black-Scholes hedge construction.  The portfolio 

funding requirement evident in the hedge construction exercise devolved into the 

short sale of a “riskless bond”.  Harrison-Pliska explained that “short selling 

amounts to borrowing  money at the riskless interest rate r”. 

To the best of our knowledge and experience, this analytical 

transformation will yield correct results with one critical caveat.  This Harrison-

Pliska assertion that “short selling amounts to borrowing ” is only appropriate 

if the “riskless interest rate” is the dealer’s own funding cost rather than the true 

risk-free interest rate (i.e., the US Treasury rate for US dollar borrowing).  The 

article appears to imply - without doing so explicitly - that the proper trading 

strategy includes a short position in US Treasury debt rather than the dealer’s 

own debt.  Consider this diagram of a (government) Treasury debt short sale: 

Dealer

Lend Cash

Treasury
Lender

Lend Treasuries

Sell
Treasuries
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The dealer executes a short sale of the Treasury securities.  That is, it sells 

securities that it does not own.  The dealer borrows the Treasuries from the 

Treasury Lender.  But the dealer must post cash in an amount generally greater 

than the value of the Treasury securities it borrows.  This cash pledge greatly 

reduces the credit risk of the Treasury Lender to the dealer.  The arrangement in 

the diagram is the familiar “Treasury repurchase agreement”. 

Thus, it is false to presume that a dealer may sell short government debt 

securities to effectively fund itself at the true risk-free interest rate.  The only 

debt that a dealer can sell without posting collateral is its own.  A dealer that 

“sells its own debt” is simply funding itself at its own funding cost.  The 

Harrison-Pliska analysis, then, is correct if the “riskless bond” in the self-

financing trading strategy is the dealer’s own debt. 

We have two qualms about the Harrison-Pliska view of derivative 

pricing that has proliferated so widely.  We outlined the first in the preceding 

paragraphs.  Many analysts mistakenly designate the true risk-free (i.e., 

government debt) interest rate as the “riskless interest rate” for the subsequent 

analysis. 

Our second objection is that the Harrison-Pliska approach replaces the 

question “does a hedge exist?” with “is the market complete?”  The former 

query is specific and the reply is readily apparent.  If the analyst claims that a 

hedge exists, he/she will describe the hedge.  The analyst would be foolish to 

state that “I assume a hedge exists but I just don’t know what it is.”  The latter 

inquiry, though, is vague.  The analyst who assumes market completeness cannot 

prove the assumption, so there’s a strong tendency to assume completeness 

when this assumption is wrong. 

If one cannot hedge a particular contingent claim, then it is “not 

attainable” in the words of Harrison-Pliska.  Since this claim is not attainable, 

the market is, therefore, not complete.  Hence, if the hedge is non-existent, 

Harrison and Pliska and their right-minded followers would agree that the 

market completeness assumption is flawed.  In practice, though, many analysts 

fail to consider the hedge existence at all.  Yet it’s so much easier and more 

intuitive to ponder the hedge than the abstract “market completeness”! 

V.  True Meaning of Risk Neutrality 

The Cox-Ross mathematical observation that the option value must 

appreciate at the rate r̂  if the underlying equity appreciates at this same rate 

greatly simplifies option valuation and seems to provide some additional insight.  

One essentially “pretends” that the equity appreciates at the rate r̂  even though 

the true (and unknown) appreciation rate  is greater than r̂ .  Further, one then 
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discounts the expected expiration value at the rate r̂  which is not ordinarily the 

proper discounting method for an uncertain return. 

We view this “risk neutrality” observation as a convenient and clever 

“trick” for deriving some derivative pricing results easily and quickly.  The 

greatest insight we deduce is that it is the presence of the hedge that makes this 

trick work.  Without the hedge, there is no basis for the claim of independence 

of derivative pricing on the true appreciation rate . 

But many in the financial community have mistaken “risk neutrality” for 

a fundamental principle rather than a trick that derives its justification from the 

existence of a hedge.  The distinction, “fundamental principle” or “trick”, may 

be largely semantic.  The best example of the mistaken application of “risk 

neutrality” is in the pricing of credit derivatives.  Some practitioners identify 

“risk-neutral default probabilities”, “risk-neutral recovery rates”, and “risk-

neutral rating transition probabilities” with no explicit reference to a hedged 

portfolio.5,6,7,8  This approach, which we discuss as one example in the next 

section, is baseless. 

If nothing else, “risk neutrality” has the wrong name.  As we’ve argued 

and will show with examples, the relevant interest rate is the dealer funding cost 

r̂  rather than the risk-free rate r.  The Cox-Ross construction confirms this view.  

Since this dealer funding cost r̂  is markedly higher than the risk-free rate, the 

dealer who demands a return of r̂  for its hedged portfolio is not at all insensitive 

to the non-zero risk of the equity.  Perhaps a better name would be “risk 

equality” to describe the trick that the presence of a hedged portfolio permits the 

analyst to set the appreciation rate of both the underlying equity and the equity 

option to the market rate r̂  of the dealer’s debt (i.e., to the dealer’s funding 

cost). 

There is no “world” - fictitious or otherwise - in which investors require 

no premium for the risks they take.  There is only a useful trick of “risk equality” 

that derives its legitimacy from a clearly defined hedged portfolio. 

VI.  Risk Neutrality is the Wrong Paradigm ....  with Examples 

The claim that “risk neutrality is the wrong paradigm” is vague and 

admits little subtlety and nuance.  So perhaps the statement is too weak.  There 

do exist situations which we describe here, however, in which the direct 

application of risk neutrality gives an incorrect result.  That’s why we label the 

risk neutrality paradigm as “wrong”.  But the application of risk neutrality does 

often give seemingly correct and sensible results.  Even in these cases, though, 

there is confusion regarding the “risk-free rate” since the principle of “risk 

neutrality” suggests by its name that one should use the US Treasury rate for the 

USD currency.  After reviewing several examples, we conclude that focusing on 
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“hedge construction” gives clearer, simpler, and more uniformly correct 

solutions for derivative pricing compared to the “risk neutrality” archetype. 

Example:  Equity Forward 

Consider first one of the simplest derivative trades:  the equity forward.  

A dealer and an investor enter into a financial contract in which the investor 

agrees to pay a fixed price F to purchase 100,000 shares of Microsoft (MSFT) 

stock six months following the effective date of the contract.  The investor’s 

motive is to profit from an appreciation of MSFT stock at the six-month expiry 

without a funded purchase of the equity position.  The dealer’s motive, of 

course, is to accommodate the investor and earn a profit. 

Pricing this equity forward is equivalent to deriving the appropriate fixed 

price F for the transaction.  While the dealer would like F to be as high as 

possible and will negotiate with this incentive, we compute F here as the value 

that gives the dealer precisely zero profit when the dealer hedges its equity risk.  

Consider this F as the mid-market level.  As a simplification, we assume that 

neither the investor nor the dealer will default on their obligations in this 

contract so that “counterparty risk” will not impact the forward stock price F. 

To derive the forward price F, we construct the hedge the dealer will use 

to negate its equity risk.  At contract execution, the dealer should buy 100,000 

shares of MSFT.  The dealer will hold the shares until it delivers them to the 

investor in six months in return for the investor’s payment of F.  The MSFT 

stock pays no dividend.  The dealer must borrow an amount S equal to 100,000 

multiplied by the current MSFT share price to fund the purchase of the hedge. 

At the six-month expiration, the dealer must repay its loan.  This loan 

repayment will be 









2

ˆ
1 

r
S  where r̂  is the dealer’s six-month borrowing rate.  

This rate r̂  is not a risk-free rate.  It is a dealer funding rate which we typically 

take to be LIBOR (the London inter-bank offer rate).  Six-month LIBOR is 

typically 20-50 basis points per annum higher than the six-month US Treasury 

rate.  Hence, the difference is substantial. 

Since the dealer must pay 









2

ˆ
1 

r
S  at expiration, the value of F must 

also be 









2

ˆ
1 

r
S  for the dealer to have precisely zero profit.  Thus, the solution 

is 











2

ˆ
1     

r
SF     (VI-1) 
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where S is the initial equity value and r̂  is the dealer’s six-month borrowing 

rate.  With this hedge argument, we had no need to invoke a risk-free interest 

rate.  The role of the dealer’s borrowing rate r̂  is clear and intuitive. 

As an alternative, we may quote the dealer’s six-month borrowing rate as 

if the interest is compounded continuously.  Let’s now call this continuously 

compounded borrowing rate r̂ .  In terms of this continuously compounded rate 

r̂ , the dealer’s payment at expiration is 2ˆ
 reS .  Thus, the solution for the MSFT 

equity forward price F becomes 

2ˆ
     reSF      (VI-2)         . 

This form (VI-2) is far less useful to traders than (VI-1).  The market does not 

use continuously compounding interest rates.  The continuous compounding is 

merely a mathematical simplification for many theoretical analyses of derivative 

pricing. 

Example:  Equity Forward with Black-Scholes Derivation 

We show (VI-2) nonetheless because we can also derive the equity 

forward price with Black-Scholes analysis.  The Black-Scholes partial 

differential equation and expiration condition for the equity forward are 

  FxTxVVVrxVrV xxxt       ,   , 
2

1
  ~  ~    2       (VI-3) 

where x and t are the equity value and time, T is the expiration of the forward 

contract (six months or half a year),  txV ,  is the value of the forward contract 

for the investor, r~ is the continuously compounded “Black-Scholes interest rate” 

(which we shall discuss) and  is the equity volatility.  The solution of (VI-3) is 

   tTreFxtxV 
~

       ,     (VI-4)         . 

To get the forward price F at contract inception, we set 0t , Sx  , 21  T , 

and   0  0, SV .  The resulting Black-Scholes solution for the forward price F is 

2~

     reSF      (VI-5)         . 

For continuously compounded interest rates, the hedge solution (VI-2) is 

identical to the Black-Scholes solution (VI-5) if one assumes that the interest 

rates r̂  and r~  are equal.  The former is the dealer’s borrowing cost while 

quantitative analysts call the latter the “risk-free rate”.  For the Black-Scholes 

result to be correct, the “risk-free rate” must, in fact, be the dealer’s borrowing 

rate r̂  since (VI-2) describes the forward equity price F at which the market will 

execute the equity forward. 
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Example:  Equity Forward with Illiquid Equity 

We modify the previous equity forward example in two ways.  Imagine 

first that the equity issuer is a Malaysian company and that only Malaysian 

investors may buy or sell the stock.  Thus, the non-Malaysian dealer cannot buy 

the underlying stock.  Second, this equity forward will be cash settled at the six-

month expiry.  The cash settlement implies that the investor will receive a 

payment for the market (bid) value of the stock rather than the stock itself in 

exchange for the investor’s payment of F to the dealer. 

The dealer cannot use “hedge construction” to determine the appropriate 

forward price F in this situation since the dealer cannot buy the underlying stock.  

Thus, the dealer can only execute the trade if it is willing to bear the risk of a 

short position in the Malaysian stock.  Without the ability to hedge, there is no 

methodical procedure to derive F for the trade.  The dealer and investor may 

agree on a forward price, but it’s highly likely the dealer will require a forward 

price greater than the future expected value of the stock as compensation for the 

dealer’s risk of loss.  (The dealer will assess equity capital against the risk of 

loss in this trade.  The dealer’s expected profit must provide a healthy return on 

the equity capital.) 

The inability to purchase the Malaysian stock does not, however, 

obviously diminish the concept of risk neutrality.  The stock has an observable 

price S in the market and one can utter the phrase “a risk-neutral investor is 

indifferent to the risk of the equity” and would therefore value this equity 

forward as if the equity drift were the “risk-free” rate r~ .  Hence, the risk 

neutrality argument would continue to find the forward price F to be 
2~

     reSF  .  This result is “wrong” in that no rational dealer would accept this 

value for F even with the understanding that the interest rate r~  is the dealer’s 

borrowing cost. 

From this discussion and from the broader construction of the Black-

Scholes model for derivative pricing, it is clear that the concept of risk neutrality 

is wrong in the absence of a hedge. 

Example:  Credit Default Swaps 

An excellent case study in the delusion of risk neutrality as a derivative 

pricing methodology arises from the study of the credit default swap.  This 

instrument is a financial contract between two parties (the “buyer” and “seller”).  

The buyer pays a quarterly premium to the seller over the life of the trade.  The 

seller pays nothing in return unless a debt obligation of a specified “reference 

entity” defaults.  If default occurs, then the trade terminates and the seller must 

pay to the buyer the notional amount of the contract while the buyer delivers to 

the seller a debt obligation of the reference entity with face value equal to the 

notional amount.  Since this reference entity has defaulted on one of its debt 



J. M. Pimbley, “The Lesser Meaning of Risk Neutrality,” Maxwell Consulting Archives, 2002. 

 

16 

obligations, it is highly likely that the seller will suffer a substantial loss upon 

this default and early termination.  That is, the bond or loan that the buyer 

delivers to the seller will likely be worth much less than the par value that the 

seller pays to the buyer. 

This credit default swap is essentially an insurance contract.  The buyer 

pays the premium and collects an economic loss amount if and when the 

reference entity defaults. 

 

Though this credit derivative instrument has been widely traded for several 

years, the models for pricing the credit default swap vary widely.  We discuss 

one of these models here. 

Risk neutrality is the basic principle of the dominant academic approach 

to credit derivative pricing.5-8  Proponents of the risk neutrality approach 

construct impressive mathematical edifices, but we can outline here in a simple 

and direct manner the important aspects. 

Risk Neutrality Argument for Credit Default Swap Pricing 

The following discussion gives the standard risk-neutral treatment of 

credit default swap pricing.  We wish to find the “fair premium” for a one-year 

credit default swap in which IBM is the reference entity.  The one-year US 

Treasury yield is r.  The yield of a one-year (remaining maturity) IBM bond 

trading in the secondary market is sr   where we call s the “spread to 

Treasuries” of the IBM bond.  For simplicity, we think in terms of a single 

payment period of length 1 year.  Another simplifying assumption is that we 

recognize default only at the end of the period.  An investor may purchase the 

risk-free Treasury security and earn r1  or purchase the risky IBM bond and 

 

Default 

Protection 
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Default 

Protection 

Seller 

Quarterly 

Premium 

(eg, 50 bps pa) 
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earn sr 1  if there is no default or earn  srR 1  if IBM does default.  This 

parameter R is the “recovery rate” of the bond and has an unknown value 

between 0 and 1.  Models of this sort generally require the user to specify the 

recovery rate R even though one has little confidence in the prediction of this 

parameter. 

Since a “risk-neutral investor” desires the same expected return for each 

investment regardless of risk, we can use the Treasury spread s of the IBM bond 

to infer the “risk-neutral default probability” p of the bond.  That is, we know the 

expected return of the IBM bond is the IBM default probability multiplied by the 

return given default plus the product of the IBM survival probability and the 

return when there is no default.  Since this IBM bond expected return equals the 

1-year Treasury’s expected return for the “risk-neutral investor”, we write 

    srpsrpRr  1 1  1    1     (VI-6)         . 

Bear in mind that this “risk-neutral default probability” is a wholly fictitious 

quantity.  It is the default probability that would be consistent with the market 

prices of the Treasury and IBM bonds if investors did not require additional 

compensation for variability of return.  Since investors do require this 

compensation, the “risk-neutral default probability” is certainly not equal to the 

“true default probability” of the bond.  But, if everything works as expected, this 

“risk-neutral default probability” will give correct derivative pricing. 

We solve equation (VI-6) to find this risk-neutral default probability as 

  srR

s
p




1 1
        (VI-7)         . 

To get the fair default swap premium with this risk neutral method, we observe 

that the buyer’s expected gain in the contract must balance the premium it pays.  

The expected gain is the risk-neutral default probability p multiplied by the gain 

upon default.  The gain upon default is  srR  11 .  With this expression and 

(VI-7), the fair premium is*  

 














 R

srR

sr

s

1
 1 

1
 

For typical values of parameters, this fair premium is “almost equal” to the 

Treasury spread s.  We’ve reached the central result of risk neutrality pricing for 

                                                           
* Economically, the credit default swap should require the seller of protection to pay par plus accrued 

interest upon a default of the reference entity rather than just par.  The buyer’s gain upon default would then 

be   srR  11  and, more importantly, the fair premium would be the spread to Treasuries s. 
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credit default swaps:  the fair premium is (approximately) equal to the risky 

bond spread to the (risk-free) US Treasury curve. 

Problem with the Risk Neutrality Result for Credit Default Swap Pricing 

The problem with the risk neutrality result for credit default swaps (i.e., 

that the fair premium is approximately equal to the risky bond’s spread to the 

Treasury curve) is that it’s wrong.  More to the point, it disagrees markedly with 

the market’s valuation of default swaps.  The market default swap premium 

corresponds strongly to the spread to the LIBOR curve of the risky bonds of the 

reference entity.  LIBOR and Treasury rates are quite different. 

Notice that the preceding risk-neutral pricing argument derived a “risk-

neutral default probability”, but there was no discussion of a hedged portfolio.  

In fact, there was no hedge at all.  The argument simply assumed that one should 

imagine that an investor would buy a risky bond and demand an expected return 

equal to the risk-free rate r. 

This omission of the hedge is a critical error.  Without the hedge, there is 

no justification for risk neutrality - which we prefer to call “risk equality”.  

Further, it is the hedge argument itself that shows that the risk-free rate r is 

irrelevant.  Though the conclusion may not be intuitively appealing, the Treasury 

rate (for USD currency trades) has absolutely no bearing on credit derivative 

pricing. 

Some purveyors of these risk-neutral models attempt to repair their 

efforts by declaring that traders should substitute LIBOR for the US Treasury 

curve as the risk-free rate.6,9  This modification “works” in the sense that the 

model then gives results consistent with the credit derivative market.  But the 

model is no longer credible since LIBOR is clearly not the risk-free rate. 

Another attempt to explain the apparent failure of risk neutrality is a 

dissection of the meaning of the yield spread between a risky corporate bond and 

the US Treasury curve.  The argument is that a bond investor receives the 

additional spread over the Treasury yield to compensate him/her both for the 

bond’s credit risk and for the bond’s relative illiquidity.  Thus, to price a credit 

derivative, some practitioners argue that one must apportion some of the 

Treasury spread to credit risk and some to illiqudity.  The credit default swap 

premium should then be approximately equal to the portion of this spread due to 

credit risk.  The analysts in this school of thought are searching for a “risk-free, 

but illiquid” yield curve benchmark.9  

We reject this hypothesis of “liquidity deconstruction” for two reasons.  

First, if the market pays an investor in an IBM bond extra yield for liquidity, 

then the seller of protection in a credit default swap referencing IBM should 

receive liquidity compensation as well.  Splitting off a liquidity component for 
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one instrument only makes no sense.  Second, it is straightforward to construct a 

hedge model for the credit default swap in which one finds quite naturally and 

intuitively that the default swap premium should be approximately the risky 

bond’s spread to the LIBOR curve.  Since the hedge construction itself 

demonstrates why the default swap premium tracks the LIBOR spread much 

more closely than the spread to the risk-free rate, there is no reason to postulate a 

liquidity effect.  The issue of liquidity need never arise. 

VII.  Summary 

There are two primary, competing views of credit default swap pricing.  

One view is highly mathematical, pedantic, claims to apply risk neutrality, and 

finds a “spread to Treasuries” result for the default swap premium.  The other 

view is much simpler, relies on the dealer’s hedge construction, and gives a 

“spread to LIBOR” outcome.  It is critically important to the credit derivative 

field that finance analysts sort out which view is correct and why. 

We have argued in this article that the “spread to Treasuries” view is in 

error due to a mistaken application of risk neutrality.  Further evidence is the 

lack of agreement between “spread to Treasuries” and the levels at which the 

market prices credit default swaps.  We devoted the primary portion of this 

discussion to the general concept of risk neutrality rather than to the more 

specific issue of credit derivative pricing. 

Our analysis of the Black-Scholes and Cox-Ross trailblazing research 

efforts found that the risk-free rate is irrelevant to virtually all derivative pricing.  

It is the dealer funding cost - which we often approximate as LIBOR - that is the 

proper interest rate for derivative pricing.  We also interpret Harrison-Pliska as 

supportive of our view that dealer funding cost rather than risk-free rate should 

play the key role in mathematical finance derivations. 

Further, what the industry calls “risk neutrality” exists only if a dealer 

can effectively hedge the derivative product in question.  If a hedge does not 

exist, risk neutrality is absent.  Black-Scholes and Cox-Ross both made very 

explicit the importance of the hedge existence.  We suggest, then, that all 

derivative pricing derivations must clearly explain the hedge and how it enters 

the pricing model. 

Finally, we suggested that “risk equality” is a better name for the 

mathematical trick that the industry now calls “risk neutrality”.  The latter name 

is misleading.  There is no “world” in which investors demand no compensation 

for risk.  There is only the “trick” that the expected derivative instrument return 

will equal the dealer funding cost when one forces the expected return of the 

underlying market variable to be equal to this same funding cost. 
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To support these claims we reviewed the Black-Scholes and Cox-Ross 

studies.  We also demonstrated with simple examples (the equity forward and 

the credit default swap) the alternative approaches of risk neutrality and hedge 

construction.  The positions in this document do not directly contradict any 

aspect of Black-Scholes, Cox-Ross, or Harrison-Pliska.  Rather, none of these 

articles defined the “riskless” rate unambiguously.  The Cox-Ross statement that 

the “riskless” rate is “a constant rate at which individuals can borrow and lend 

freely” is consistent with our belief. 

The great legacies of Black-Scholes and Cox-Ross are the concept of the 

hedged portfolio and some mathematical techniques to exploit that insight.  

Much subsequent work in finance has emphasized the mathematics at the 

expense of the humbler role of the hedged portfolio.  In cases such as credit 

default swap pricing, the omission of the hedge gives wrong answers. 
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