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This encapsulation of  
discount factor value at all 
forward times, within a sin-
gle value y, is the hallmark 

of classical bond math. 
Though a great simplifica-
tion of reality, the conve-

nience of the representation 
is overwhelming.

trades at par (i.e., the bond value equals the outstanding prin-
cipal amount) when the coupon rate c equals the bond yield y. 
This c = y outcome is independent of  coupon period ∆t and 
maturity T.

Bond Price for Arbitrary Coupon and Principal 
Amortization
Our goal here is to find an analogous result for the more 
general bond with amortizing principal and unequal cou-
pon rates. The previous example was a “bullet bond” that 
returned all principal to the investor at the final payment date 
at time T = N∆t. Some bonds – e.g., mortgage bonds, sinking 
fund bonds and pass-through bonds – repay principal at each 
payment date rather than simply at the final date.

To consider this more general bond structure, we now write 
Pi as the outstanding principal prevailing just after the pay-
ment at time i∆t. With P0 still the initial outstanding principal, 
it follows that the principal payment at time i∆t is Pi-1 –Pi. 

Since the bond matures at time T = N∆t, then PN = 0 (since 
PN is the outstanding principal after the payment at time T). 
We permit the coupon rate to be variable by writing it as ci 
rather than just c. By the interest-in-arrears convention of  
bond payments, the interest payment at time i∆t is Pi-1 ci-1∆t.

In a manner identical to equation (1), we write the bond 
price as the sum of  discounted interest and principal pay-
ments, and find the following:

Manipulating one of  these terms,

we continue to the final result:

The interest and importance of  equation (5) is that we see 
the familiar emphasis on the difference between coupon rate 
and yield. If  we specify a constant coupon rate ci = c while 
maintaining arbitrary principal amortization, then the “par 
value condition” c = y still holds. When we maintain the vari-
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returned all principal to the investor at the final payment date at time 𝑇𝑇 = 𝑁𝑁∆𝑡𝑡.  Some 

bonds – e.g., mortgage bonds, sinking fund bonds and pass-through bonds – repay 
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In a manner identical to equation (1), we write the bond price as the sum of 

discounted interest and principal payments, and find the following: 

𝑝𝑝(𝑦𝑦)  =   ∑[𝑃𝑃𝑖𝑖−1𝑐𝑐𝑖𝑖−1∆𝑡𝑡 + (𝑃𝑃𝑖𝑖−1 − 𝑃𝑃𝑖𝑖)]𝛼𝛼𝑖𝑖    (3)
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=   𝛼𝛼 ∑ 𝛼𝛼𝑖𝑖𝑃𝑃𝑖𝑖 − 
𝑁𝑁−1

𝑖𝑖=0
∑ 𝛼𝛼𝑖𝑖𝑃𝑃𝑖𝑖  =   𝛼𝛼𝑃𝑃0 −  (1 − 𝛼𝛼) ∑ 𝛼𝛼𝑖𝑖𝑃𝑃𝑖𝑖
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we continue to the final result: 

𝑝𝑝(𝑦𝑦)  =   𝑃𝑃0 +  𝛼𝛼∆𝑡𝑡 ∑ 𝛼𝛼𝑖𝑖𝑃𝑃𝑖𝑖(𝑐𝑐𝑖𝑖 − 𝑦𝑦)
𝑁𝑁−1

𝑖𝑖=0
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Simplifying Expression 
for the Classical Bond 

Price-Yield Relationship
By D.A. McDevitt-Pimbley and J.M. Pimbley

he “classical bond math” approach to 
valuing a fixed-income debt obligation 
is ubiquitous in the financial world. 
In this framework, one may convert a 
bond price, p, to a bond yield, y, and 
vice-versa. 

Both price and yield are critical pa-
rameters for the bond trader and risk 
manager in different contexts. The 

price provides the actual purchase or sale proceeds. Ultimate 
return in a trading strategy depends on prices (and times) at 
which the trader buys and sells.

Bond yield, on the other hand, is paramount in comparing 
one bond to another. Specifically, two bonds of  the same ob-
ligor, payment priority, collateral security and remaining ma-
turity may have vastly different prices, but the yields must be 
nearly equal. Even for two bonds that differ in essentially every 
respect, it is the yield measure, rather than the price measure, 
that provides the more intuitive sense of  relative value.

Hence, the analyst must know and consider both the price 
and yield of  a bond. Our term, “classical bond math” (CBM), 
denotes the well-known method for performing the conversion 
from price to yield and yield to price. We describe in this ar-
ticle a new result that aids the interpretation of  a general case.

Bond Price with Conventional Discount Yield
Let us consider first a standard case in which a bond with 
principal amount P0 pays interest to the bearer equal to c∆t 
for every time period ∆t from the present to maturity T=N∆t, 

where N is the number of  interest (“coupon”) payments. The 
period ∆t is measured in years. Thus, semi-annual bond pay-
ments imply ∆t = ½. The coupon c is a per-annum fraction 
of  par (principal). Hence, a c value of  0.05 means the investor 
receives interest of  5% of  the principal amount per annum.

In this communication, we assume the first coupon period 
and all subsequent periods are of  the same period length 
∆t. The generalization to an arbitrary first-period length is 
straightforward. But we wish to avoid the discussions of  “stub 
periods” or of  “accrued interest” that such generalization 
would require, since the general result does not impact our 
final result of  a simplifying CBM price-yield relationship.

With these prescriptions, equation (1) gives the price (“val-
ue”) of  the bond as a function of  yield y, as follows:

Note that yield y enters as the key parameter for the time-
dependent discount factor . This encapsulation of  discount 
factor value at all forward times, within a single value y, is the 
hallmark of  CBM. Analysts understand it to be a great simpli-
fication of  reality, but the convenience of  the representation 
is overwhelming. One may readily evaluate the summation of  
equation (1) to find:

Equation (2b) expresses the “benchmark result” that a bond 

T The coupon c is a per-annum fraction of par (principal).  Hence, a c value of 0.05 

means the investor receives interest of 5% of the principal amount per annum. 

In this communication, we assume the first coupon period and all subsequent 

periods are of the same period length ∆𝑡𝑡.  The generalization to an arbitrary first-

period length is straightforward.  But we wish to avoid the discussions of “stub 

periods” or of “accrued interest” that such generalization would require, since the 

general result does not impact our final result of a simplifying CBM price-yield 

relationship. 

With these prescriptions, equation (1) gives the price (“value”) of the bond 

as a function of yield y, as follows: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑝𝑝(𝑦𝑦)  =   𝑃𝑃0 𝑝𝑝 ∆𝑡𝑡 ∑ 𝛼𝛼𝑖𝑖  +   𝑃𝑃0𝛼𝛼𝑁𝑁   𝑤𝑤𝑝𝑝𝑡𝑡ℎ   𝛼𝛼 ≡   1
1 + 𝑦𝑦∆𝑡𝑡    .  (1)
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readily evaluate the summation of equation (1) to find: 

𝑝𝑝(𝑦𝑦)  =   𝑃𝑃0
𝛼𝛼𝛼𝛼∆𝑡𝑡
1−𝛼𝛼 (1 − 𝛼𝛼𝑁𝑁) +  𝑃𝑃0𝛼𝛼𝑁𝑁    (2a) 

 

and 𝑝𝑝(𝑦𝑦)  =   𝑃𝑃0 +  𝑃𝑃0 (𝛼𝛼−𝑦𝑦
𝑦𝑦 ) (1 − 𝛼𝛼𝑁𝑁)   .  (2b) 

Equation (2b) expresses the “benchmark result” that a bond trades at par (i.e., the 

bond value equals the outstanding principal amount) when the coupon rate c equals 

the bond yield y.  This 𝑝𝑝 = 𝑦𝑦outcome is independent of coupon period ∆𝑡𝑡 and 

maturity T. 

Bond Price for Arbitrary Coupon and Principal Amortization 

Our goal here is to find an analogous result for the more general bond with amortizing 

principal and unequal coupon rates.  The previous example was a “bullet bond” that 

The coupon c is a per-annum fraction of par (principal).  Hence, a c value of 0.05 

means the investor receives interest of 5% of the principal amount per annum. 

In this communication, we assume the first coupon period and all subsequent 

periods are of the same period length ∆𝑡𝑡.  The generalization to an arbitrary first-

period length is straightforward.  But we wish to avoid the discussions of “stub 

periods” or of “accrued interest” that such generalization would require, since the 

general result does not impact our final result of a simplifying CBM price-yield 

relationship. 

With these prescriptions, equation (1) gives the price (“value”) of the bond 

as a function of yield y, as follows: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑝𝑝(𝑦𝑦)  =   𝑃𝑃0 𝑝𝑝 ∆𝑡𝑡 ∑ 𝛼𝛼𝑖𝑖  +   𝑃𝑃0𝛼𝛼𝑁𝑁   𝑤𝑤𝑝𝑝𝑡𝑡ℎ   𝛼𝛼 ≡   1
1 + 𝑦𝑦∆𝑡𝑡   .  (1)

𝑁𝑁

𝑖𝑖=1
 

Note that yield y enters as the key parameter for the time-dependent discount factor 

α.  This encapsulation of discount factor value at all forward times, within a single 

value y, is the hallmark of CBM.  Analysts understand it to be a great simplification 

of reality, but the convenience of the representation is overwhelming.  One may 

readily evaluate the summation of equation (1) to find: 

𝑝𝑝(𝑦𝑦)  =   𝑃𝑃0
𝛼𝛼𝛼𝛼∆𝑡𝑡
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and 𝑝𝑝(𝑦𝑦)  =   𝑃𝑃0 +  𝑃𝑃0 (𝛼𝛼−𝑦𝑦
𝑦𝑦 ) (1 − 𝛼𝛼𝑁𝑁)   .  (2b) 

Equation (2b) expresses the “benchmark result” that a bond trades at par (i.e., the 

bond value equals the outstanding principal amount) when the coupon rate c equals 

the bond yield y.  This 𝑝𝑝 = 𝑦𝑦outcome is independent of coupon period ∆𝑡𝑡 and 

maturity T. 

Bond Price for Arbitrary Coupon and Principal Amortization 

Our goal here is to find an analogous result for the more general bond with amortizing 

principal and unequal coupon rates.  The previous example was a “bullet bond” that 

The coupon c is a per-annum fraction of par (principal).  Hence, a c value of 0.05 

means the investor receives interest of 5% of the principal amount per annum. 

In this communication, we assume the first coupon period and all subsequent 

periods are of the same period length ∆𝑡𝑡.  The generalization to an arbitrary first-

period length is straightforward.  But we wish to avoid the discussions of “stub 

periods” or of “accrued interest” that such generalization would require, since the 

general result does not impact our final result of a simplifying CBM price-yield 

relationship. 

With these prescriptions, equation (1) gives the price (“value”) of the bond 

as a function of yield y, as follows: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  𝑝𝑝(𝑦𝑦)  =   𝑃𝑃0 𝑝𝑝 ∆𝑡𝑡 ∑ 𝛼𝛼𝑖𝑖  +   𝑃𝑃0𝛼𝛼𝑁𝑁   𝑤𝑤𝑝𝑝𝑡𝑡ℎ   𝛼𝛼 ≡   1
1 + 𝑦𝑦∆𝑡𝑡   .  (1)

𝑁𝑁

𝑖𝑖=1
 

Note that yield y enters as the key parameter for the time-dependent discount factor 

α.  This encapsulation of discount factor value at all forward times, within a single 

value y, is the hallmark of CBM.  Analysts understand it to be a great simplification 

of reality, but the convenience of the representation is overwhelming.  One may 

readily evaluate the summation of equation (1) to find: 

𝑝𝑝(𝑦𝑦)  =   𝑃𝑃0
𝛼𝛼𝛼𝛼∆𝑡𝑡
1−𝛼𝛼 (1 − 𝛼𝛼𝑁𝑁) +  𝑃𝑃0𝛼𝛼𝑁𝑁    (2a) 

 

and 𝑝𝑝(𝑦𝑦)  =   𝑃𝑃0 +  𝑃𝑃0 (𝛼𝛼−𝑦𝑦
𝑦𝑦 ) (1 − 𝛼𝛼𝑁𝑁)   .  (2b) 

Equation (2b) expresses the “benchmark result” that a bond trades at par (i.e., the 

bond value equals the outstanding principal amount) when the coupon rate c equals 

the bond yield y.  This 𝑝𝑝 = 𝑦𝑦outcome is independent of coupon period ∆𝑡𝑡 and 

maturity T. 

Bond Price for Arbitrary Coupon and Principal Amortization 

Our goal here is to find an analogous result for the more general bond with amortizing 

principal and unequal coupon rates.  The previous example was a “bullet bond” that 

ability of  coupon rate ci, equation (5) shows that the par con-
dition holds when yield y is a suitable weighted average of  the 
ci, as follows:


