
 

Yield Curve Calculations 

Background:  Everything is “discount factors” 

Yield curve calculations include valuation of forward rate agreements 

(FRAs), swaps, interest rate options, and forward rates.  The most important 

component of all these calculations is the determination of “zero coupon 

discount factors” (or, just “discount factors”).  This note focuses on the problem 

of computing the forward rate between any two future dates.  This ordeal 

effectively ends when we get the discount factors for the two dates since the 

remaining labor for the forward rate is straightforward. 

Discount factors are synonymous with “present value” 

Each forward date has an associated discount factor that represents the 

value today of a hypothetical payment that one would receive on the forward 

date expressed as a fraction of the hypothetical payment.
*
  For example, if we 

expect to receive $1000 in six months, then its present value might be $989.  

Thus, the discount factor for six months would be 0.989.  The question then 

becomes how to derive the $989 of this example. 

Before we begin, let’s remark that discount factors are all about interest 

rates.  Unless stated otherwise (very unlikely in this article!), we deal here with 

the “LIBOR/swap curve”.  The meaning of this term will emerge in the 

following sections. 

Begin with the simplest calculations for discount factors 

The discount factor for a forward point in time is the value today (also 

known as “present value”) of a payment to be received at the forward time 

expressed as a fraction.  By definition, then, the discount factor for “today” is 

1.0 since a payment today has present value of precisely the payment value.  In 

the example of the preceding section, we made up the number $989 as the 

present value of a payment of $1000 to be received in six months.  The 

connection between these two amounts is investment with interest.  If we have 

$989 today, we can invest this amount for six months.  If in six months’ time our 

original principal and interest totals $1000, then we are indifferent to having 

$989 now or $1000 in six months. 

Let 6L  be the interest rate (quoted annually) at which we can invest for 

six months.  Then the interest earned will be 
2
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 *  * 989$ 6L  where we multiply 

                                                 
*
 Please don’t take the word “today” too literally.  Due to market convention, “today” in some contexts 

means two business days forward from “today”.  This is “spot settlement” and we choose not to elevate the 

importance of this distinction here. 

Joe Pimbley, unpublished, 2005. 



by one-half to denote six months (half a year).  Adding the principal and interest 

and setting the sum to the $1000 value at six months shows 

$989  +  
2

1
 *  * 989$ 6L   =  $1000    . 

Re-arranging terms and expressing as a fraction of ultimate payment gives 

0.989  =  

2
1

1

6L


      . 

The equation above is somewhat backward since we have a constant value on 

the left-hand side and what appears to be a variable ( 6L ) on the right-hand side.  

In real life, though, we will know 6L  and will need to determine the discount 

factor which, in this example, we stipulated to be 0.989. 

We’ve over-simplified.  We need to take into account the “daycount 

convention” of the interest rates we use.  The 6L  - which we will shortly 

describe as “six-month LIBOR” – has the daycount of “actual/360” which 

means we multiply by the number of days in the period and divide by 360 (as if 

each year has 360 days).  In a six-month time period, the actual daycount is 

more likely to be 182 than 180.  Our convention will be to use t  - often with a 

subscript – to indicate the time period in years between two dates measured by 

the governing daycount convention.  To denote both aspects that the discount 

factor is the value to be calculated and that that we need to determine the precise 

t  as per the daycount convention, we re-write the previous equation as 

Discount factor  =  
tL   1

1
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      . 

Let’s review the available market information 

To compute discount factors, we begin with market interest rate 

information.  The market rates of interest to us are LIBOR (the “London inter-

bank offered rate”) for maturities of twelve months and less and “swap rates” for 

maturities of two years to thirty years.  (See Bloomberg USSWAP.)  The most 

prominent LIBOR maturities are 1 month, 3 months, 6 months, and 12 months, 

though there are also settings for every other month, overnight, 1 week and 

2 weeks.  (See Bloomberg BBAM.) 

We ignore Eurodollar futures contracts primarily for convenience.  They 

complicate the analysis significantly.  In principle, the swap data we use will 

give us almost identical results to what we’d expect with futures.
*
 

All LIBOR settings imply simple interest with actual/360 daycount.  

Swaps are not so accommodating.  In a swap, one side pays a fixed rate with 

30/360 daycount semi-annually.  The other side pays 3-month LIBOR with 

                                                 
*
 The difference in final results is “convexity” and is important to professional swap dealers. 



actual/360 daycount quarterly.  A quoted swap rate of, say, 4% for a 5-year 

maturity means that a 5-year swap in which the fixed-rate payer pays 4% semi-

annually and the floating-rate payer pays 3-month LIBOR quarterly will have a 

zero value (i.e., the swap is at-market). 

Re-visit the simplest calculations for discount factors 

The earlier section that discussed “simplest calculations for discount 

factors” treated only the case with a 6-month maturity.  The calculation is nearly 

identical for any maturity that matches that of an available LIBOR maturity.  For 

example, the discount factor at 3 months is just 

Discount factor  =  
tL   1

1
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in which the t  is the actual number of days to the forward date (likely 90, 91, 

or 92) divided by 360.  This method “works” for any LIBOR maturity.  But such 

maturities do not extend beyond 12 months and it is this point at which the 

discount factor calculation becomes more challenging. 

Linear interpolation for yields 

Before tackling the challenging problem of discount factors for 

maturities beyond 12 months, let’s imagine we want the discount factor for 

6.5 months.  There is no 6.5-month LIBOR, so we apply the expression 

Discount factor  =  
tL   1

1
      . 

Here we designate L as the linear interpolation of the 6-month and 7-month 

LIBOR settings. 

Generally speaking, linear interpolation works well for yields but is not 

appropriate for discount factors.  Based on the mathematical nature of how the 

discount factor depends on yield, linear interpolation of yield suggests 

logarithmic interpolation for discount factors.  Hence, we view the latter as the 

proper choice for discount factor interpolation when necessary. 

It’s not uncommon to hear others promote (cubic or higher order) splines 

for yield interpolation.  Our view is that splines do not provide greater accuracy 

and, in fact, introduce numerical risk.  Splines may be more exotic, but that 

doesn’t make them better. 

Bootstrapping for discount factors beyond 12 months 

Beyond 12 months we must rely on swap data.  Swaps behave much 

differently than simple borrowing and lending at LIBOR.  As we noted 

previously, the fixed-rate payer pays the swap (fixed) rate semi-annually and 

receives 3-month LIBOR quarterly (from the floating-rate payer).  So the swap 

rate is, roughly speaking, an average of 3-month LIBOR from “now” until the 

swap contract maturity. 



To compute discount factors we adopt a recursive procedure known as 

“bootstrapping”.  Our goal is to compute discount factors at six-month intervals.  

We know the discount factors at six and twelve months from the simple-interest 

LIBOR calculations.  For the discount factor at eighteen months, we use both 

the (fixed) swap rate 3R  and the two prior discount factors 1z  and 2z  to 

compute the 18-month discount factor 3z .  Remember that the discount factor 

for “today” is 10 z .  Let jf  be the forward LIBOR rate for the interval 1jt  to 

jt .  As we’ll note later, “forward” LIBOR is the expected future value of 

LIBOR given today’s market.  Then, we write the market value of the swap as 

the present value of expected future cashflows.  Since a swap “at-market” has 

zero value, we get 
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(To get 3z , the discount factor at 18 months, we set 3i  in this equation.)  We 

define 1 jjj ttt  with the actual/360 daycount convention and 

1
ˆ

 jjj ttt  with the 30/360 daycount convention. 

Before proceeding, we must make a remarkable observation.  The second 

term in the summation of equation (1) simplifies drastically to 
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Let’s call this the “algebraic wonder of finance” and it explains why LIBOR 

floaters reset to par with each (quarterly) rate setting.  Of course, the math 

doesn’t really drive the finance.  Rather, it’s the underlying “physics” of LIBOR 

floaters that manifests itself in the wonder of equation (2).  The curious reader 

may verify equation (2) given the forward rate jf  that emerges from an 

arbitrage argument: 
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Combining equations (1) and (2) and realizing that 10 z  and 21ˆ  jt , 

we can solve for iz  as 

i

i

j

ji

i
R

zR

z
  2

    2

    

1

1











      (4)  . 

This is bootstrapping!  Equation (4) gives us 3z , for example, when we know 

1z , 2z , and 3R .  Once we do have 3z , we’d then compute 4z  and so on. 



There are three loose ends here.  First, we need to have swap rates iR  at 

all 6-month maturity points beginning at 18 months.  The market does not quote 

this many swap rates.  Where necessary, then, we interpolate linearly to fill in 

missing swap rates.  Second, we get discount factors only at these 6-month 

maturity points.  When we need a discount factor at any other time point, we 

interpolate logarithmically as we discussed earlier.  Finally, our equation (1) 

seems to have forgotten that the floating rate payments in a swap are quarterly.  

We simplified the problem by making the floating rate payments semi-annual.  

When we treat the payment frequency correctly, we do get the same results in 

the ensuing equations.  I removed a layer of complexity by the approximate 

method of equation (1). 

Arbitrage argument for the forward rate 

Equation (3) relates discount factors to forward rates and is central to 

“the new bond math”.
*
  How does one derive equation (3)?  Let’s think of the 

forward rate f between two future dates as the expected future rate linking the 

dates.  For example, if I agree now to lend you $1 six months from today and 

you agree to re-pay me $1 plus interest nine months from today, then I am 

making a 3-month loan 6 months forward.  If you and I knew today what 3-

month LIBOR would be in 6 months, then we would use this future LIBOR 

value as the interest rate for the loan.  But we don’t know what 3-month LIBOR 

will be!  Thus, we stipulate the forward rate as the interest rate for the forward 

loan. 

One would think that you and I should negotiate the forward rate based 

on what we believe 3-month LIBOR will be in 6 months.  But that’s not right!  

Instead, the market tells us forward LIBOR by a clever argument.  Instead of 

making the forward loan of the prior paragraph to you, I will go to a bank and 

lend for 9 months today at 9-month LIBOR and borrow for 6 months today at 6-

month LIBOR.  Instead of a forward loan, I have two simple, old-fashioned 

loans (with one “long” and one “short”).  Both loans are in the amount of 

 6611$ tL .
#
  Since the loans are of the same amount, I have no net payment 

today.  My loan cancels my borrowing.  But I must re-pay precisely $1 in 6 

months.  In 9 months I will receive    6699 11 tLtL   as repayment for the 9-

month loan. 

With my two simple loans I have created the (synthetic) forward loan.  

Now I can compute the effective interest rate of this forward loan with 

     696699    1    11 ttftLtL      (5)  . 

                                                 
*
 In contrast, “the old bond math” is comprised of “yield-to-maturity” and expressions of the form 

  n
y

2
21  to compute forward values. 

#
 I hope the notation isn’t confusing.  The subscripts “6” and “9” refer to six and nine months, respectively.  

The t  is, once again, time as fraction of a year in the actual/360 daycount convention. 



Solving equation (5) for f with  69 ttt   and relating discount factors to the 

LIBOR values gives equation (3).  This argument applies for any two dates 

rather than just those less than 12 months for which we can use LIBOR values 

as we’ve done here.  For the dates 1t  and 2t , we would create the synthetic 

forward loan by borrowing an amount 1z  for time 1t  and lending this same 

amount 1z  for time 2t .  At time 1t  we’d then pay $1 while at time 2t  we’d 

receive 21 zz .  Equation (5) would then become 

 1221    1    ttfzz      (6)  . 

Meaning of the forward rate 

It’s not uncommon to hear market players disparage forward rates with a 

comment such as “forward rates are not good predictors of future rates”.  When 

you hear this statement, brace yourself!  You’re about to be assailed with an 

heroic market story in which the speaker-protagonist shrewdly predicted some 

past market move.  If the speaker is your boss, then nod appreciatively.  If not, 

smirk derisively. 

The forward rate is the market’s expectation of the future rate.  It’s not a 

prediction in the sense that any of us should believe that LIBOR will be this 

value.  Rather, the forward rate is the consensus average value of potential 

future outcomes.  For illustration, if the forward rate for a particular period is 

4% and you believe rates will, in reality, be higher (lower) at this future time, 

you can place a bet (with a Eurodollar futures contract).  If LIBOR in the future 

is higher (lower) than 4%, you win.  Conversely, if LIBOR in the future is lower 

(higher) than 4%, you lose.  If LIBOR actually does come in at 4%, you break 

even. 

The forward rate, then, is not just a calculation and it’s not the output of 

some econometric model.  It’s real!  The forward rate for a defined future period 

is just as much a market variable as 3-month LIBOR or the IBM stock price.  

The current value of any market variable is the market consensus.  It’s neither 

right nor wrong, it’s the market! 


